Lesson 1.12 - Polynomial Long Division

Learning Objectives: SWBAT

- Divide polynomials using the process of long division and quantify any remainders

Background:
Consider the graph of

$$
f(x)=6 x^{3}-19 x^{2}+16 x-4
$$

Notice in Figure 2.32 that $x=2$ appears to be a zero of f. Because $f(2)=0$, you know that $x=2$ is a zero of the polynomial function f, and that $(x-2)$ is a factor of $f(x)$. This means that there exists a second-degree polynomial $q(x)$ such that $f(x)=(x-2) \cdot q(x)$. To find $q(x)$, you can use long division of polynomials.

Figure 2.32

Example: Divide $6 x^{3}-19 x^{2}+16 x-4$ by $x-2$, and use the result to factor the polynomial completely.

Solution

$$
\begin{aligned}
& \begin{array}{r}
\text { Partial quotients } \\
6 x^{2}-7 x+2 \\
x - 2 \longdiv { 6 x ^ { 3 } - 1 9 x ^ { 2 } + 1 6 x - 4 }
\end{array} \\
& \begin{aligned}
& 6 x^{3}-12 x^{2} \\
&-7 x^{2} \\
& \hline
\end{aligned} \quad \begin{array}{l}
\text { Multiply: } 6 x^{2}(x-2) . \\
\text { Subtract. }
\end{array} \\
& \text { - } 7 x^{2}+14 x \quad \text { Multiply: }-7 x(x-2) \text {. } \\
& 2 x-4 \text { Subtract. } \\
& \begin{aligned}
2 x-4 & \text { Multiply: } 2(x-2) \text {. } \\
0 & \text { Subtract. }
\end{aligned}
\end{aligned}
$$

You can see that

$$
\begin{aligned}
6 x^{3}-19 x^{2}+16 x-4 & =(x-2)\left(6 x^{2}-7 x+2\right) \\
& =(x-2)(2 x-1)(3 x-2) .
\end{aligned}
$$

Note that this factorization agrees with the graph of f (see Figure 2.32) in that the three x-intercepts occur at $x=2, x=\frac{1}{2}$, and $x=\frac{2}{3}$.

Lesson 1.12 - Polynomial Long Division

Use long division to divide the following (please note any remainders)

1. Divide $2 x^{2}+10 x+12$ by $x+3$.
2. Divide $5 x^{2}-17 x-12$ by $x-4$.
3. Divide $x^{4}+5 x^{3}+6 x^{2}-x-2$ by $x+2$.
4. Divide $x^{3}-4 x^{2}-17 x+6$ by $x-3$.
5. Divide $4 x^{3}-7 x^{2}-11 x+5$ by $4 x+5$.
6. Divide $2 x^{3}-3 x^{2}-50 x+75$ by $2 x-3$.

Lesson 1.12 - Polynomial Long Division

Use long division to divide the following (please note any remainders)
7. Divide $7 x^{3}+3$ by $x+2$.
8. Divide $8 x^{4}-5$ by $2 x+1$.
9. $\left(x+8+6 x^{3}+10 x^{2}\right) \div\left(2 x^{2}+1\right)$
10. $\left(1+3 x^{2}+x^{4}\right) \div\left(3-2 x+x^{2}\right)$
11. $\left(x^{3}-9\right) \div\left(x^{2}+1\right)$
12. $\left(x^{5}+7\right) \div\left(x^{3}-1\right)$

