Lesson 1.13 - Synthetic Division

Learning Objectives: SWBAT

- Divide polynomials using the process of synthetic division

Background

There is a nice shortcut for long division of polynomials when dividing by divisors of the form $x-k$. The shortcut is called synthetic division. The pattern for synthetic division of a cubic polynomial is summarized as follows. (The pattern for higher-degree polynomials is similar.)

Synthetic Division (of a Cubic Polynomial)

To divide $a x^{3}+b x^{2}+c x+d$ by $x-k$, use the following pattern.

This algorithm for synthetic division works only for divisors of the form $x-k$. Remember that $x+k=x-(-k)$.

Example Use synthetic division to divide $x^{4}-10 x^{2}-2 x+4$ by $x+3$.

Solution

You should set up the array as follows. Note that a zero is included for each missing term in the dividend.

Then, use the synthetic division pattern by adding terms in columns and multiplying the results by -3 .

So, you have

$$
\frac{x^{4}-10 x^{2}-2 x+4}{x+3}=x^{3}-3 x^{2}-x+1+\frac{1}{x+3} .
$$

Lesson 1.13 - Synthetic Division

Practice: Use synthetic division to divide the polynomial by the given linear factor. Write any remainders as fractions of the divisor

1. $\left(3 x^{2}+7 x+2\right) \div(x+2)$
2. $\left(2 x^{2}+7 x-15\right) \div(x+5)$
3. $\left(7 x^{2}-3 x+5\right) \div(x+1)$
4. $\left(4 x^{2}+x+1\right) \div(x-2)$
5. $\left(3 x^{2}+4 x-x^{4}-2 x^{3}-4\right) \div(x+2)$
6. $\left(3 x^{2}-4+x^{3}\right) \div(x-1)$
7. $\left(x^{4}+1\right) \div(x+1)$
8. $\left(x^{4}+9\right) \div(x+3)$
9. $\left(x^{4}-16\right) \div(x+2)$
10. $\frac{x^{6}+4 x^{5}-2 x^{3}+7}{x+1}$
