Learning Objectives: SWBAT

- Use the remainder theorem to evaluate a polynomial for a given input value
- Use the factor theorem to determine if a linear binomial is a factor of a larger polynomial
- · Determine all real zeros of a polynomial given a factor

Background - The Remainder Theorem

The remainder obtained in the synthetic division process has an important interpretation, as described in the Remainder Theorem.

The Remainder Theorem (See the proof on page 180.)

If a polynomial f(x) is divided by x - k, the remainder is

$$r=f(k)$$
.

The Remainder Theorem tells you that synthetic division can be used to evaluate a polynomial function. That is, to evaluate a polynomial function f(x) when x = k, divide f(x) by x - k. The remainder will be f(k).

Example: Use the Remainder Theorem to evaluate the following function at x = -2.

$$f(x) = 3x^3 + 8x^2 + 5x - 7$$

Solution

Using synthetic division, you obtain the following.

Because the remainder is r = -9, you can conclude that

$$f(-2) = -9. \qquad r = f(k)$$

This means that (-2, -9) is a point on the graph of f. You can check this by substituting x = -2 in the original function.

Check

$$f(-2) = 3(-2)^3 + 8(-2)^2 + 5(-2) - 7$$
$$= 3(-8) + 8(4) - 10 - 7$$
$$= -24 + 32 - 10 - 7 = -9$$

Background - The Factor Theorem

Another important theorem is the **Factor Theorem**. This theorem states that you can test whether a polynomial has (x - k) as a factor by evaluating the polynomial at x = k. If the result is 0, (x - k) is a factor.

A polynomial f(x) has a factor (x - k) if and only if f(k) = 0.

Example: Show that (x - 2) and (x + 3) are factors of

$$f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18.$$

Then find the remaining factors of f(x).

Algebraic Solution

Using synthetic division with the factor (x - 2), you obtain the following.

Take the result of this division and perform synthetic division again using the factor (x + 3).

Because the resulting quadratic factors as

$$2x^2 + 5x + 3 = (2x + 3)(x + 1)$$

the complete factorization of f(x) is

$$f(x) = (x-2)(x+3)(2x+3)(x+1).$$

Using the Remainder in Synthetic Division

In summary, the remainder r, obtained in the synthetic division of f(x) by x - k, provides the following information.

- 1. The remainder r gives the value of f at x = k. That is, r = f(k).
 - 2. If r = 0, (x k) is a factor of f(x).
 - 3. If r = 0, (k, 0) is an x-intercept of the graph of f.

Practice

In Exercises 35-38, use the Remainder Theorem and synthetic division to evaluate the function at each given value. Use a graphing utility to verify your results.

 $35. \ f(x) = 2x^3 - 7x + 3$

(a) f(1) (b) f(-2) (c) $f(\frac{1}{2})$ (d) f(2)

36. $g(x) = 2x^6 + 3x^4 - x^2 + 3$

(a) g(2) (b) g(1) (c) g(3) (d) g(-1)

37. $h(x) = x^3 - 5x^2 - 7x + 4$

(a) h(3) (b) h(2) (c) h(-2) (d) h(-5)

Practice

In Exercises 39–42, use synthetic division to show that x is a solution of the third-degree polynomial equation, and use the result to factor the polynomial completely. List all the real zeros of the function.

Polynomial Equation

39.
$$x^3 - 7x + 6 = 0$$

$$x = 2$$

40.
$$x^3 - 28x - 48 = 0$$

$$r = -4$$

$$\frac{1}{-4} \frac{0}{10} \frac{-28}{48} \frac{-48}{-7} \times^{2} 4x - 12 - 7 \left(x - 6 \right) \left(x + 2 \right) \times = -4.6, -2$$

41.
$$2x^3 - 15x^2 + 27x - 10 = 0$$
 $x = \frac{1}{2}$

$$x=\frac{1}{2}$$

$$x^{2} + 27x - 10 = 0 x = \frac{1}{2}$$

$$\frac{27}{-7} \frac{-10}{10} - 7 2 + \frac{2}{-14} + 20 - 7 \text{ (AA-16) (A)} x = \frac{1}{2}, 5, 2$$

State if the given binomial is a factor of the given polynomial.

7)
$$(k^3 - k^2 - k - 2) \div (k - 2)$$

8)
$$(b^4 - 8b^3 - b^2 + 62b - 34) \div (b - 7)$$

8)
$$(b^4 - 8b^3 - b^2 + 62b - 34) \div (b - 7)$$
7) $1 - 8 - 1 62 - 34$
7 - 7 - 56 42
Fact

9)
$$(n^4 + 9n^3 +$$

9)
$$(n^4 + 9n^3 + 14n^2 + 50n + 9) \div (n + 8)$$

10)
$$(p^4 + 6p^3 + 11p^2 + 29p - 13) \div (p + 5)$$

10)
$$(p^4 + 6p^3 + 11p^2 + 29p - 13) \div (p + 5)$$

$$-5$$
 | 6 | 11 | 29 | -13 | -5 | -5 | -5 | -30 | -5 | -5 | -30 | -5 | -5 | -30 | -5 | -5 | -30 | -1

Practice

Factor each and find all zeros. One factor has been given.

1)
$$f(x) = x^3 + 9x^2 + 23x + 15$$
; $x + 5$
-5 | 1 | 9 | 23 | 15 | $x = -5$
-5 | -20 | -17 | $x = -5$
1 | 4 | 3 | 0 | $x = -3$
 $x = -1$
 $x = -1$

= x (x+5)(x+1)

2)
$$f(x) = x^3 - x^2 - 14x + 24$$
; $x - 3$

3)
$$1 - 1 - 14 - 24$$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 - 8 0 = 2605$
 $1 - 2 -$

4)
$$f(x) = x^3 - 12x^2 + 47x - 60$$
; $x - 3$

3) $1 - 12 + 7 - 60$
 $3 - 27 - 60$
 $4 = 3$
 $1 - 9 - 20$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$
 $4 = 3$

6)
$$f(x) = x^3 - 3x^2 - 9x + 27$$
; $x - 3$
 $\begin{vmatrix} 2eros \\ 3 \end{vmatrix} = 1 - 3 - 9 - 27 \\ \hline 1 & 0 & -9 \end{vmatrix}$
 $\begin{vmatrix} 2eros \\ x = 3 \text{ mult 2} \\ x = -3 \end{vmatrix}$
 $\begin{vmatrix} 2eros \\ x = 3 \text{ mult 2} \\ x = -3 \end{vmatrix}$
 $\begin{vmatrix} 2eros \\ x = 3 \text{ mult 2} \\ x = -3 \end{vmatrix}$

10)
$$f(x) = 3x^3 - 4x^2 - 9x + 10$$
; $x - 2$

2) $3 - 4 - 9x + 10$; $x - 2$

4 - 10

3 2 - 5 0

3 $x^2 + 2x - 5 = (3x + 5)(x + 1)$