Lesson 1.18 - The Fundamental Theorem of Algebra (part 2)

Learning Objectives: SWBAT:

1. Use the Fundamental Theorem of Algebra to write the equation of a polynomial given real and/or complex zeros
Making a connection:

- In lesson 1.11 we learned how to write the equation of a polynomial given its REAL zeros.
- This lesson is similar, except now we will also be given COMPLEX zeros.
- One of the keys to this is remembering that complex zeros (and irrational zeros), ALWAYS come in conjugate pairs.
- Therefore, if we are given one complex or irrational zero, we need to remember that its conjugate is also a zero

Example: Find a fourth-degree polynomial function with real coefficients that has $-1,-1$, and $3 i$ as zeros.

Solution

Because $3 i$ is a zero and the polynomial is stated to have real coefficients, you know that the conjugate $-3 i$ must also be a zero. So, from the Linear Factorization Theorem, $f(x)$ can be written as

$$
f(x)=a(x+1)(x+1)(x-3 i)(x+3 i)
$$

For simplicity, let $a=1$ to obtain

$$
f(x)=\left(x^{2}+2 x+1\right)\left(x^{2}+9\right)=x^{4}+2 x^{3}+10 x^{2}+18 x+9
$$

Practice: Write the equation of the polynomial given the zeros:
37. $2, i,-i$
38. $3.4 i$. $-4 i$
39. 2, 2, 4-i
40. $-1,-1,2+5 i$

Lesson 1.18 - The Fundamental Theorem of Algebra (part 2)

Practice: Write the equation of the polynomial given the zeros:
41. $0,-5,1+\sqrt{2} i$
42. $0,4,1+\sqrt{2} i$
43. $1,-2,2 i$
44. $-1,2, i$
45. $-1,2+\sqrt{5} i$
46. $-2,2+2 \sqrt{2} i$

State the possible number of imaginary zeros of $g(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, and e are real number coefficients.
(A) 3 or 1
(B) 2,4 , or 0
(C) Exactly 1
(D) Exactly 3
(E) Exactly 4

