Lesson 1.19 - The Fundamental Theorem of Algebra (part 3)

Learning Objectives: SWBAT:

1. Use the Fundamental Theorem of Algebra to determine all zeros given complex or irrational zeros

Making a connection:

- In this lesson, we will be given either a complex or irrational zero of a polynomial equation
- We need to remember that irrational and complex zeros ALWAYS come in conjugate pairs
- We will multiply these pairs together, then use long division to break down the polynomial into its remaining zeros
Example: Find all the zeros of

$$
f(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60
$$

given that $1+3 i$ is a zero of f.

Algebraic Solution

Because complex zeros occur in conjugate pairs, you know that $1-3 i$ is also a zero of f. This means that both

$$
x-(1+3 i) \quad \text { and } \quad x-(1-3 i)
$$

are factors of f. Multiplying these two factors produces

$$
\begin{aligned}
{[x-(1+3 i)][x-(1-3 i)] } & =[(x-1)-3 i][(x-1)+3 i] \\
& =(x-1)^{2}-9 i^{2} \\
& =x^{2}-2 x+10 .
\end{aligned}
$$

Using long division, you can divide $x^{2}-2 x+10$ into f to obtain the following.

$$
\begin{array}{r}
x ^ { 2 } - x - 6 x + 1 0 \longdiv { x ^ { 4 } - 3 x ^ { 3 } + 6 x ^ { 2 } + 2 x - 6 0 } \\
\frac{x^{4}-2 x^{3}+10 x^{2}}{-x^{3}-4 x^{2}+2 x} \\
\frac{-x^{3}+2 x^{2}-10 x}{-6 x^{2}+12 x-60} \\
-6 x^{2}+12 x-60
\end{array}
$$

So, you have

$$
\begin{aligned}
f(x) & =\left(x^{2}-2 x+10\right)\left(x^{2}-x-6\right) \\
& =\left(x^{2}-2 x+10\right)(x-3)(x+2)
\end{aligned}
$$

and you can conclude that the zeros of f are $x=1+3 i, x=1-3 i$, $x=3$, and $x=-2$.

Lesson 1.19 - The Fundamental Theorem of Algebra (part 3)

Practice: Given one zero, determine all remaining zeros of the polynomial

Function

51. $f(x)=2 x^{3}+3 x^{2}+50 x+75$
52. $f(x)=x^{3}+x^{2}+9 x+9$
$3 i$
53. $g(x)=x^{3}-7 x^{2}-x+87 \quad 5+2 i$

Lesson 1.19 - The Fundamental Theorem of Algebra (part 3)

Practice: Given one zero, determine all remaining zeros of the polynomial
Function
Zero
54. $g(x)=4 x^{3}+23 x^{2}+34 x-10 \quad-3+i$
55. $h(x)=3 x^{3}-4 x^{2}+8 x+8$
$1-\sqrt{3} i$
56. $f(x)=x^{3}+4 x^{2}+14 x+20 \quad-1-3 i$

Lesson 1.19 - The Fundamental Theorem of Algebra (part 3)

Practice: Given one zero, determine all remaining zeros of the polynomial

Function	Zero
59. $f(x)=x^{4}+3 x^{3}-5 x^{2}-21 x+22$	$-3+i \sqrt{2}$

60. $\mathrm{f}(\mathrm{x})=x^{4}+2 x^{3}+x^{2}+18 x-72$
$3 i$
