Lesson 1.21 - Rational Function Attributes

Learning Objectives: SWBAT

1. Identify discontinuities in Rational function graphs as Vertical Asymptotes or holes and determine their location given the function's equation
2. Determine the horizontal Asymptotes of a rational function
3. Determine the zeros of a rational function

What are Discontinuities?

- Discontinuities are "gaps" in what would otherwise be a continuous graph. The two types of discontinuities are Vertical Asymptotes and Holes.

What is an Asymptote?

- An Asymptote represents the end behavior of a curved graph as it approaches either +/- infinity. The graph approaches the asymptote but NEVER touches/crosses it.
Asymptotes can vertical, horizontal or oblique (slanted)

What is a Vertical Asymptote?

- A Vertical Asymptote is a vertical line of discontinuity on the graph. It represents a x values where the y value is undefined.

What is a hole?

- A Hole is a point of discontinuity on the graph. Similar to vertical asymptotes above, holes represent x value(s) where the y value is undefined.
How do we find Vertical Asymptotes and Holes?
- A Vertical Asymptote is the result when the factor that causes the denominator to equal zero is NOT cancelled while simplifying
- A Hole is the result when the factor that causes the denominator to equal 0 also exists in the numerator (and thereby can be cancelled out)
Example: Identify the number of discontinuities present in the rational function below. Identify the location of any vertical Asymptotes and the coordinates of any holes

$$
f(x)=\frac{x-4}{x^{2}-16} \text {, factor the denominator } \longrightarrow \frac{(x-4)}{(x+4)(\dot{x}-4)} \text { notice how } \mathrm{x}=4 \text { cancels }
$$

- There is a vertical Asymptote at $x=-4$
- There is a hole at $x=4$. This is the x coordinate of the hole

To find the y coordinate of the hole:
> Simplify (cancel) the expression above and plua in the x coordinate of the hole

$$
\frac{(x-4)}{(x+4)(x-4)} \longrightarrow \frac{1}{(x+4)} \longrightarrow \frac{1}{((4)+4)} \longrightarrow \frac{1}{8}
$$

$>$ The coordinate of the hole is $\left(4, \frac{1}{8}\right)$
Your Turn Determine the locations of any vertical asymptotes and the corrdinates of any hole of the following function

$$
f(x)=\frac{x^{2}-9}{x^{2}+4 x+3}
$$

Lesson 1.21 - Rational Function Attributes

How do we find Horizontal Asymptotes?

- The existence and location of a horizontal asymptote depends on the one of the following conditions:
$>$ If the degree of the numerator is less than the degree of the denominator, then a a horizontal asymptote exists at $\mathrm{y}=0$
> If the degree of the numerator is greater than the degree of the denominator, then a horizontal asymptote does not exist
> If the degree of the numerator and denominator are the same then a horizontal asymptote will exist at the following line:

$$
y=\frac{\text { lead coefficient of numerator }}{\text { lead coefficient of denominator }}
$$

Example Let $y=\frac{3-2 x-x^{2}}{x^{2}+x-2}$. Identify all asymptotes and holes in the graph.

SOLUTION

Factor the numerator and denominator.

$$
y=\frac{3-2 x-x^{2}}{x^{2}+x-2}=\frac{-\left(x^{2}+2 x-3\right)}{(x-1)(x+2)}=\frac{-(x+3)(x-1)}{(x-1)(x+2)}
$$

Because $x-1$ is a factor of both the numerator and the denominator, the graph has a hole when $x=1$.

Because $x+2$ is a factor of only the denominator, there is a vertical asymptote at $x=-2$.

Because the degree of the numerator equals the degree of the denominator, there is a horizontal asymptote at $y=\frac{-1}{1}=-1$.

How do we find zeros (x intercepts)?

- Look to the numerator. Whatever x value makes the numerator zero is the x value of the x intercept
- In the example above, the coordinates of the x intercept is $(-3,0)$

Your Turn - Find any vertical asymptotes, holes, horizontal asymptotes and zeros for the following function:
$f(x)=\frac{x^{3}+3 x^{2}}{x^{2}+2 x-3}$

Lesson 1.21 - Rational Function Attributes

For each function: Find any vertical asymptotes, holes, horizontal asymptotes and zeros for the following function:

1) $f(x)=\frac{1}{3 x^{2}+3 x-18}$
2) $f(x)=\frac{x-2}{x-4}$
3) $f(x)=\frac{x^{3}-x^{2}-6 x}{-3 x^{2}-3 x+18}$
4) $f(x)=\frac{x^{2}+x-6}{-4 x^{2}-16 x-12}$
5) $f(x)=-\frac{4}{x^{2}-3 x}$
6) $f(x)=\frac{x-4}{-4 x-16}$
7) $f(x)=\frac{x+4}{-2 x-6}$
8) $f(x)=\frac{x^{3}-9 x}{3 x^{2}-6 x-9}$

Lesson 1.21 - Rational Function Attributes

9) $f(x)=\frac{3 x^{2}-12 x}{x^{2}-2 x-3}$
10) $f(x)=\frac{x^{3}-16 x}{-4 x^{2}+4 x+24}$
11) $f(x)=\frac{x^{2}+2 x}{-4 x+8}$
12) $f(x)=\frac{x+2}{2 x+6}$
13) $f(x)=\frac{2 x^{2}+10 x+12}{x^{2}+3 x+2}$
14) $f(x)=\frac{3}{x-2}$
2. $y=\frac{x^{2}+5 x+6}{x^{2}-9}$
3. $y=\frac{x^{2}-4}{3 x^{2}-15 x+18}$
