Lesson 1.22-Slant (Oblique) Asymptotes

Learning Objectives: SWBAT

1. Identify the conditions in which a slant asymptote exists for a rational function
2. Write the equation of the slant asymptote for a given rational function

Consider a rational function whose denominator is of degree 1 or greater. If the degree of the numerator is exactly one more than the degree of the denominator, the graph of the function has a slant (or oblique) asymptote. For example, the graph of

$$
f(x)=\frac{x^{2}-x}{x+1}
$$

has a slant asymptote, as shown in Figure 2.62. To find the equation of a slant asymptote, use long division. For instance, by dividing $x+1$ into $x^{2}-x$, you have

$$
f(x)=\frac{x^{2}-x}{x+1}=\underbrace{x-2}+\frac{2}{x+1} .
$$

Slant asymptote

($y=x-2$)
As x increases or decreases without bound, the remainder term $2 /(x+1)$ approaches 0 , so the graph of f approaches the line $y=x-2$, as shown in Figure 2.62.

Figure 2.62
Your Turn - Determine the equation of the slant asymptote for the function below:

$$
f(x)=\frac{x^{2}-x-2}{x-1}
$$

Lesson 1.22 - Slant (Oblique) Asymptotes

Practice: Determine whether or not a slant asymptote exists for the functions below. If it does exist, write its equation/location
43. $f(x)=\frac{2 x^{2}+1}{x}$
44. $g(x)=\frac{1-x^{2}}{x}$
45. $h(x)=\frac{x^{2}}{x-1}$
46. $f(x)=\frac{x^{3}}{x^{2}-1}$
47. $g(x)=\frac{x^{3}}{2 x^{2}-8}$
48. $f(x)=\frac{x^{2}-1}{x^{2}+4}$
49. $f(x)=\frac{x^{3}+2 x^{2}+4}{2 x^{2}+1}$
50. $f(x)=\frac{2 x^{2}-5 x+5}{x-2}$

Lesson 1.22 - Slant (Oblique) Asymptotes

Practice: Determine whether or not a slant asymptote exists for the functions below. If it does exist, write its equation/location
55. $y=\frac{2 x^{2}+x}{x+1}$
56. $y=\frac{x^{2}+5 x+8}{x+3}$
57. $y=\frac{1+3 x^{2}-x^{3}}{x^{2}}$
58. $y=\frac{12-2 x-x^{2}}{2(4+x)}$
63. $f(x)=\frac{2 x^{3}-x^{2}-2 x+1}{x^{2}+3 x+2}$
64. $f(x)=\frac{2 x^{3}+x^{2}-8 x-4}{x^{2}-3 x+2}$

