Lesson 1.24 - Polynomial Inequalities

Learning Objectives: SWBAT

1. Explain the difference between the solution to a polynomial equation versus a polynomial inequality
2. Solve polynomial equations, quantify the solution using interval notation

Making a connection - The difference between equations and inequalities

- In Unit 1A, we solved polynomial equations by finding the values that made $y=0$
- These solutions were single points where the graph crossed the x axis
- From Algebra 2, we know that solutions simple inequalities (such as $x>1$) are an infinite number of points
- Solutions to polynomial inequalities work similarly. They are intervals upon which the values on the graph are greater than or less than zero.
- The key to understanding this idea is in knowing how the graph works. Below is a comparison of a polynomial equation and inequality for the same function

- The solution to the inequality are all of the points with a $y>0$. If the inequality was a "less than", then the solution would be all of the points where $y<0$. Because there is an infinite number of points between each boundary, there are an infinite number of solutions to the inequality (similar to a simple inequality)
- Open circles signify that the zeros themselves are NOT included in the solution. If the inequality was a \geq or \leq then these circles would be closed
- The solutions to the equation set the boundaries for the intervals of solutions to the inequality

How to write the solution:

- To write the solution, we must use interval notation, because the parts of the solution are on "intervals" on the x axis
- The first interval is from -2 to -1 , the second interval is from 1 to $+\infty$
- We would write the solution using interval notation $(-2,-1) \cup(1, \infty)$
$>$ Remember: If the inequality were $\mathrm{a} \geq$ or \leq then then we would use brackets []
- For the function $\mathbf{x}^{\mathbf{3}}+\mathbf{2} \mathbf{x}^{2} \mathbf{- x} \mathbf{- 2}<\mathbf{0}$, the solution would be intervals $(-\infty,-2) \cup(-1,1)$

Lesson 1.24 - Polynomial Inequalities

Example: Solve the following polynomial inequality: $x^{3}+x^{2}-9 x+3>12$

$$
\begin{array}{cl}
x^{3}+x^{2}-9 x-9>0 & \text { Step 1 }- \text { Make right side }=0 \\
(x+3)(x-3)(x+1)>0 & \text { Step 2 }- \text { Factor } \\
x=3, x=-3, x=-1 & \text { Step 3 }- \text { Determine zeros and } \\
\text { multiplicities }
\end{array}
$$

- From here, you have two choices as to how to finish

1. Do a rough sketch of the polynomial using end behavior, multiplicity and the zeros as we learned in unit 1A. The rough sketch of the polynomial would look like this:

2. Draw a number line with the zeros as boundaries for the intervals (see below)

Pick a "test point" from each interval and evaluate (plug it into) the function to determine if the result is positive or negative:

* Evaluate $f(-4)$, the result is negative, therefore numbers less than -3 ARE NOT part of the solution
* Evaluate $\mathrm{f}(-2)$, the result is positive, therefore numbers in between -3 and -1 ARE part of the solution
* Evaluate $f(0)$, the result is negative, therefore numbers in between -1 and ARE part of the solution
* Evaluate $f(4)$, the result is positive, therefore numbers in between greater than 3 ARE part of the solution
Label the positive negative areas above/below the number line

3. The solutions are all intervals where $f(x)$ is positive. The zeros are NOT included in the solution.
« Writing in interval notation, the solution is $(-3,-1) \mathrm{U}(3, \infty)$
Your Turn: Solve the inequality $(x+4)(x-2)(x-7)>0$

Lesson 1.24 - Polynomial Inequalities

Practice:
Solve each inequality.

1) $(x-4)(x+3)<0$
2) $(x-4)(x+1) \geq 0$
3) $(x-1)(3 x-4) \geq 0$
4) $(x+8)(x+2)(x-3) \geq 0$
5) $x^{2}+5 x+4 \leq 0$
6) $x^{2}-14 x+49 \geq 0$
7) $x^{2}-4 x-32>0$
8) $x^{2}+16 x+24>6 x$

Lesson 1.24 - Polynomial Inequalities

Practice:
9) $(x+5)(x-2)(x-1)(x+1)<0$
10) $(x+8)^{2}(x+5)(x+7)^{2} \geq 0$
11. $2 x^{2}-3 \leq x$
12. $7-x^{2} \leq 0$
13. $x^{4}-5 x^{2} \leq-4$
15. $x^{3}-11 x^{2}-8 x+88 \geq 0$
14. $x^{5}+9 x \geq 10 x^{3}$
16. $x^{4}-13 x^{2}+36 \leq 0$

