Lesson 1.26 - Absolute Value Equations

Learning Objectives: SWBAT

1. Solve Absolute Value Equations and identify extraneous solutions

What is Absolute Value?

- Absolute Value is the (positive) distance away from zero of a number on the number line

Essential Understanding An absolute value quantity is nonnegative. Since opposites have the same absolute value, an absolute value equation can have two solutions.

| Key Concept Absolute Value | |
| :--- | :--- | :--- |
| Definition Numbers Symbols
 The absolute value of a real number x, written $\|x\|$, $\|4\|=4$ $\|x\|=x$, if $x \geq 0$
 is its distance from zero on the number line. $\|-4\|=4$ $\|x\|=-x$, if $x<0$ | |

An absolute value equation has a variable within the absolute value sign. For example, $|x|=5$. Here, the value of x can be 5 or -5 since $|5|$ and $|-5|$ both equal 5 .

Both 5 and -5 are 5 units from 0 .

What is the process for solving AV Equations?

1. Isolate the Absolute Value term as if you were solving for a single variable
2. Once the $A V$ term is isolated, break it up into two equations, one for the positive solution, and another for the negative. Then, solve for each to get two solutions

Example 1 What is the solution of $3|x+2|-1=8$? Graph the solution.

$$
\begin{aligned}
& 3|x+2|-1=8 \\
& 3|x+2|=9 \quad \text { Add } 1 \text { to each side. } \\
& \text { Isolated AV term } \longrightarrow|x+2|=3 \\
& \text { Divide each side by } 3 . \\
& x+2=3 \text { or } x+2=-3 \text { Rewrite as two equations. } \\
& x=1 \text { or } \quad x=-5 \text { Subtract } 2 \text { from each side of both equations. } \\
& \stackrel{-4}{4} \\
& \text { Check } 3|(1)+2|-1 \stackrel{?}{\underline{\underline{2}} 8} \\
& 3|3|-1 \stackrel{?}{=} 8 \\
& 8=8 \downarrow \\
& 3|(-5)+2|-1 \stackrel{?}{=} 8 \\
& 3|-3|-1 \stackrel{?}{\underline{?}} 8 \\
& 8=8 \downarrow
\end{aligned}
$$

Lesson 1.26 - Absolute Value Equations

When will we get extraneous solutions?
Distance from 0 on the number line cannot be negative. Therefore, some absolute value equations, such as $|x|=-5$, have no solution. It is important to check the possible solutions of an absolute value equation. One or more of the possible solutions may be extraneous.

An extraneous solution is a solution derived from an original equation that is not a solution of the original equation.

Example 2 What is the solution of $|3 x+2|=4 x+5$? Check for extraneous solutions.

$$
\begin{array}{rlrlrl}
|3 x+2| & =4 x+5 \\
3 x+2 & =4 x+5 & \text { or } & & & \\
-x & =3 \\
x & =-3 x+2 & =-(4 x+5) & & \text { Rewrite as two equations. } \\
& \text { or } & & & & \\
3 x+2 & =-4 x-5 \\
7 x & =-7 & & \text { Solve each equation. } \\
x & =-1 & &
\end{array}
$$

$$
\text { Check } \begin{aligned}
|3(-3)+2| & \stackrel{?}{=} 4(-3)+5 & |3(-1)+2| & \stackrel{?}{=} 4(-1)+5 \\
|-9+2| & \stackrel{?}{=}-12+5 & |-3+2| & \stackrel{?}{=}-4+5 \\
|-7| & \neq-7 \boldsymbol{x} & |-1| & =1 \boldsymbol{\downarrow}
\end{aligned}
$$

Since $x=-3$ does not satisfy the orginal equation, -3 is an extraneous solution. only solution to the equation is $x=-1$.

Your Turn \#1 What is the solution of $2|x+9|+3=7$? Graph the solution.

Your Turn \#2
What is the solution of $|5 x-2|=7 x+14$? Check for extraneous solutions.

Lesson 1.26 - Absolute Value Equations

Practice - Solve each equation, check/identify any extraneous solutions
10. $|3 x|=18$
11. $|-4 x|=32$
12. $|x-3|=9$
13. $2|3 x-2|=14$
14. $|3 x+4|=-3$
15. $|2 x-3|=-1$
16. $|x+4|+3=17$
17. $|y-5|-2=10$
18. $|4-z|-10=1$
19. $|x-1|=5 x+10$
20. $|2 z-3|=4 z-1$
21. $|3 x+5|=5 x+2$
22. $|2 y-4|=12$
23. $3|4 w-1|-5=10$
24. $|2 x+5|=3 x+4$

