Lesson 1.26 - Absolute Value Equations

Learning Objectives: SWBAT

1. Solve Absolute Value Equations and identify extraneous solutions

What is Absolute Value?

Absolute Value is the (positive) distance away from zero of a number on the number line

Essential Understanding An absolute value quantity is nonnegative. Since opposites have the same absolute value, an absolute value equation can have two solutions.

Key Concept Absolute Value	ny de nir raid	
Definition	Numbers	Symbols
The absolute value of a real number <i>x</i> , written $ x $, is its distance from zero on the number line.	4 = 4 $ -4 = 4$	$ x = x$, if $x \ge 0$ x = -x, if $x < 0$
absolute value equation has a variable within the absolute sign. For example, $ x = 5$. Here, the value of x can $r -5$ since $ 5 $ and $ -5 $ both equal 5.	lute be $\leftarrow 1 \rightarrow 1 + -6-5-4-3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3$	5 and –5 are 5 units 0.

What is the process for solving AV Equations?

- 1. Isolate the Absolute Value term as if you were solving for a single variable
- 2. Once the AV term is isolated, break it up into two equations, one for the positive solution, and another for the negative. Then, solve for each to get two solutions

Example 1 What is the solution of 3|x + 2| - 1 = 8? Graph the solution.

$$3|x + 2| - 1 = 8$$

$$3|x + 2| = 9$$
Add 1 to each side.
Isolated AV term $\longrightarrow |x + 2| = 3$

$$x + 2 = 3 \text{ or } x + 2 = -3 \text{ Rewrite as two equations.}$$

$$x = 1 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 1 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 1 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 1 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ or } x = -5 \text{ Subtract 2 from each side of both equations.}$$

$$4 = 3 \text{ or } x = -5 \text{ or } x = -5$$

Lesson 1.26 - Absolute Value Equations

When will we get extraneous solutions?

Distance from 0 on the number line cannot be negative. Therefore, some absolute value equations, such as |x| = -5, have no solution. It is important to check the possible solutions of an absolute value equation. One or more of the possible solutions may be *extraneous*.

An **extraneous solution** is a solution derived from an original equation that is *not* a solution of the original equation.

Example 2 What is the solution of |3x + 2| = 4x + 5? Check for extraneous solutions.

|3x + 2| = 4x + 5 3x + 2 = 4x + 5 or 3x + 2 = -(4x + 5) Rewrite as two equations. $-x = 3 \qquad | \qquad 3x + 2 = -4x - 5 \text{ Solve each equation.}$ 7x = -7 x = -3 or x = -1Check $|3(-3) + 2| \stackrel{?}{=} 4(-3) + 5 \qquad |3(-1) + 2| \stackrel{?}{=} 4(-1) + 5$ $|-9 + 2| \stackrel{?}{=} -12 + 5 \qquad |-3 + 2| \stackrel{?}{=} -4 + 5$ $|-7| \neq -7 \times \qquad |-1| = 1 \checkmark$

Since x = -3 does not satisfy the orginal equation, -3 is an extraneous solution. only solution to the equation is x = -1.

Your Turn #1 What is the solution of 2|x + 9| + 3 = 7? Graph the solution.

Your Turn #2 What is the solution of |5x - 2| = 7x + 14? Check for extraneous solutions.

Lesson 1.26 - Absolute Value Equations

Practice - Solve each equation,	, check/identify any extraneous sol	utions
10. $ 3x = 18$	11. $ -4x = 32$	12. $ x-3 = 9$
13. $2 3x - 2 = 14$	14. $ 3x + 4 = -3$	15. $ 2x - 3 = -1$
16. $ x + 4 + 3 = 17$	17. $ y-5 -2=10$	18. $ 4 - z - 10 = 1$
19. $ x - 1 = 5x + 10$	20. $ 2z - 3 = 4z - 1$	21. $ 3x + 5 = 5x + 2$
22. $ 2y - 4 = 12$	23. $3 4w - 1 - 5 = 10$	24. $ 2x + 5 = 3x + 4$