Lesson 1.27 - Absolute Value Inequalities

Learning Objectives: SWBAT

1. Solve Absolute Value Inequalities and graph the solution on a number line

Making a connection

- In lesson 1.26 we solved AB equations. As with other equations we have solved, the nature of the solution were single point(s) that satisfied the equation
- As with other inequalities we have solved, the nature of the solutions to AV inequalities is an infinite "range" of points.
- The idea/process of solving for the "boundary" values is exactly the same in lesson 1.26. The difference that the <> signs determine where the "range" of solutions is located

Example 1 Solving the Absolute Value Inequality |A| < b

What is the solution of |2x - 1| < 5? Graph the solution.

|2x - 1| < 5 -5 < 2x - 1 < 5 2x - 1 is between -5 and 5. -4 < 2x < 6 Add 1 to each part. -2 < x < 3 Divide each part by 2. -3 - 2 - 1 0 1 2 3

- Things to notice:
 - > When the problem is a LESS THAN problem, the solutions are <u>between</u> the two boundaries
 - > Closed circles would be used if the problem uses a ≤ or ≥ sign

Example 2 Solving the Absolute Value Inequality $|A| \ge b$

What is the solution of $|2x + 4| \ge 6$? Graph the solution.

 $|2x + 4| \ge 6$ $2x + 4 \le -6 \quad \text{or} \quad 2x + 4 \ge 6 \quad \text{Rewrite as a compound inequality.}$ $2x \le -10 \quad | \qquad 2x \ge 2 \quad \text{Subtract 4 from each side of both inequalities.}$ $x \le -5 \quad \text{or} \qquad x \ge 1 \quad \text{Divide each side of both inequalities by 2.}$

- Things to notice:
 - > When the problem is a GREATER THAN problem, the solutions are outside the two boundaries
 - > Open circles would be used if the problem uses a < or > sign

take note Concept Summary Solutions of Absolute Value Statements				
Symbols	Definition	Graph		
x = a	The distance from <i>x</i> to 0 is <i>a</i> units.	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline -a & 0 & a \\ x = -a \text{ or } x = a \end{array}$		
$ x < a$ $(x \le a)$	The distance from <i>x</i> to 0 is less than <i>a</i> units.	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline -a & 0 & a \\ \hline -a < x < a \end{array}$		
$ x > a (x \ge a)$	The distance from <i>x</i> to 0 is greater than <i>a</i> units.	x > -a and x < a $-a 0 a$ $x < -a or x > a$		

Lesson 1.27 - Absolute Value Inequalities

Practice Solve each inequality. Graph the solution.

25. $3 y-9 < 27$	26. $ 6y - 2 + 4 < 22$	27. $ 3x - 6 + 3 < 15$
--------------------------	--------------------------------	--------------------------------

1		
28. $\frac{1}{4} x-3 + 2 < 1$	29. $4 2w+3 -7 \le 9$	30. $3 5t - 1 + 9 \le 23$

31. |x+3| > 9 **32.** $|x-5| \ge 8$ **33.** $|y-3| \ge 12$

34. $|2x + 1| \ge -9$ **35.** $3|2x - 1| \ge 21$ **36.** |3z| - 4 > 8

Lesson 1.27 - Absolute Value Inequalities

Extra Practice: AV Equations and Inequalities

Solve each equation.

43.
$$-|4 - 8b| = 12$$
 44. $4|3x + 4| = 4x + 8$

45.
$$|3x - 1| + 10 = 25$$

46. $\frac{1}{2}|3c + 5| = 6c + 4$

47.
$$5|6-5x| = 15x-35$$

48. $7|8-3h| = 21h-49$

Solve each inequality. Graph the solutions.

57.
$$|3x - 4| + 5 \le 27$$
 58. $|2x + 3| - 6 \ge 7$

63.
$$\frac{1}{9}|5x-3|-3 \ge 2$$
 64. $\frac{1}{11}|2x-4|+10 \le 11$

65.
$$\left|\frac{x-3}{2}\right| + 2 < 6$$
 66. $\left|\frac{x+5}{3}\right| - 3 > 6$