Lesson 1.27 - Absolute Value Inequalities

Learning Objectives: SWBAT

1. Solve Absolute Value Inequalities and graph the solution on a number line

Making a connection

- In lesson 1.26 we solved AB equations. As with other equations we have solved, the nature of the solution were single point(s) that satisfied the equation
- As with other inequalities we have solved, the nature of the solutions to AV inequalities is an infinite "range" of points.
- The idea/process of solving for the "boundary" values is exactly the same in lesson 1.26. The difference that the < > signs determine where the "range" of solutions is located

Example 1 Solving the Absolute Value Inequality $|\boldsymbol{A}|<\boldsymbol{b}$

What is the solution of $|2 x-1|<5$? Graph the solution.

$$
\begin{aligned}
& |2 x-1|<5 \\
& -5<2 x-1<5 \quad 2 x-1 \text { is between }-5 \text { and } 5 . \\
& -4<2 x<6 \quad \text { Add } 1 \text { to each part. } \\
& -2<x<3 \text { Divide each part by } 2 .
\end{aligned}
$$

- Things to notice:
> When the problem is a LESS THAN problem, the solutions are between the two boundaries
> Closed circles would be used if the problem uses a \leq or \geq sign

Example 2 Solving the Absolute Value Inequality $|\boldsymbol{A}| \geq \boldsymbol{b}$

What is the solution of $|2 x+4| \geq 6$? Graph the solution.

$$
\begin{aligned}
|2 x+4| & \geq 6 \\
2 x+4 & \leq-6
\end{aligned} \text { or } \quad 2 x+4 \geq 6 \quad \text { Rewrite as a compound inequality. }
$$

- Things to notice:
> When the problem is a GREATER THAN problem, the solutions are outside the two boundaries
> Open circles would be used if the problem uses a < or > sign

Lesson 1.27 - Absolute Value Inequalities

Concept Summary Solutions of Absolute Value Statements

Symbols

$|x|=a$$\quad$| Definition |
| :--- |
| The distance from x to 0 is |
| a units. |

Practice Solve each inequality. Graph the solution.
25. $3|y-9|<27$
26. $|6 y-2|+4<22$
27. $|3 x-6|+3<15$
28. $\frac{1}{4}|x-3|+2<1$
29. $4|2 w+3|-7 \leq 9$
30. $3|5 t-1|+9 \leq 23$
31. $|x+3|>9$
32. $|x-5| \geq 8$
33. $|y-3| \geq 12$
34. $|2 x+1| \geq-9$
35. $3|2 x-1| \geq 21$
36. $|3 z|-4>8$

Lesson 1.27-Absolute Value Inequalities

Extra Practice: AV Equations and Inequalities

Solve each equation.
43. $-|4-8 b|=12$
44. $4|3 x+4|=4 x+8$
45. $|3 x-1|+10=25$
46. $\frac{1}{2}|3 c+5|=6 c+4$
47. $5|6-5 x|=15 x-35$
48. $7|8-3 h|=21 h-49$

Solve each inequality. Graph the solutions.
57. $|3 x-4|+5 \leq 27$
58. $|2 x+3|-6 \geq 7$
63. $\frac{1}{9}|5 x-3|-3 \geq 2$
64. $\frac{1}{11}|2 x-4|+10 \leq 11$
65. $\left|\frac{x-3}{2}\right|+2<6$
66. $\left|\frac{x+5}{3}\right|-3>6$

