Lesson 1.4 - Using Interval Notation to quantify Domain and Range

Learning Objectives: SWBAT

- Define the domain and range of a function using interval notation

What are "Intervals" of a function?

- Intervals are "portions" of the domain of a function (remember, domain = "x" values)
- They have left and right boundaries that include all points on the graph in between
- When the boundary itself is part of the interval, it is represented by a closed circle on the graph
- When the boundary itself is NOT part of the interval, it is represented by an open circle on the graph
- The range of the interval is defined by the least/greatest "y" value

Review of Interval Notation

By interval notation: An interval is a connected subset of numbers. Interval notation is an alternative to expressing your answer as an inequality. Unless specified otherwise, we will be working with real numbers.

When using interval notation, the symbol:
(means "not included" or "open".
means "included" or "closed".

$2 \leq x<6$	as an inequality.
$[2,6)$	in interval notation.

The chart below will show you all of the possible ways of utilizing interval notation.

Interval Notation: (description)
Open Interval: (a, b) is interpreted as $a<x<b$ where the endpoints are NOT included. (While this notation resembles an ordered pair, in this context it refers to the interval upon which you are working.)
Closed Interval: $[a, b]$ is interpreted as $a \leq x \leq b$ where the endpoints are included.
Half-Open Interval: $(a, b]$ is interpreted as $a<x \leq b$ where a is not included, but b is included.
Half-Open Interval: $[a, b)$ is interpreted as $a \leq x<b$ where a is included, but b is not included.
Non-ending Interval: (a, ∞) is interpreted as $x>a$ where a is not included and infinity is always expressed as being "open" (not included).
Non-ending Interval: $(-\infty$, b] is interpreted as $x \leq b$ where b is included and again, infinity is always expressed as being "open" (not included).

Lesson 1.4 - Using Interval Notation to quantify Domain and Range

Example: Define the domain and range of the graph below using interval notation:

Domain

The closed dot at $(-1,-5)$ indicates that $x=-1$ is in the domain of f, whereas the open dot at $(4,0)$ indicates that $x=4$ is not in the domain. So, the domain of f is all x in the interval $[-1,4)$.

Range

Because the graph does not extend below $f(-1)=-5$ or above $f(2)=4$, the range of f is the interval $[-5,4]$.

Your Turn: Define the domain and range of the graphs below using interval notation:

Domain : \qquad Domain: \qquad Domain : \qquad
Range : \qquad Range : \qquad Range : \qquad

Domain: \qquad
Range : \qquad
Domain : \qquad
Range : \qquad

Lesson 1.4 - Using Interval Notation to quantify Domain and Range

Example

Range : \qquad Range : \qquad Range : \qquad
Domain: \qquad

Range : \qquad

Domain: \qquad
Range : \qquad

Domain: \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

Domain: \qquad
Range :

Domain: \qquad
Range : \qquad

