Lesson 1.5 - Defining Increasing and Decreasing Intervals

Learning Objectives: SWBAT

- · Define increasing and decreasing intervals of a function graph
- · Identify the existence of relative maxima/minima of a function given its graph

Review: Identifying Increasing/Decreasing Intervals

- · An interval of a function is INCREASING if its slope is positive
- An interval of a function is DECREASING if its slope is negative
- · An interval of a function is CONSTANT if its slope is zero
- Always define increasing/decreasing intervals using "x" values (look left to right)
- · See the figure below for each case

- · This function is decreasing on the interval [-2, 0]
- This function is constant on the interval [0, 2]
- · This function is increasing on the interval [2. 4]

Your Turn: Define the increasing/decreasing/constant intervals for the following:

Review: Relative Maxima/Minima

- A relative Maxima (max) is a turning point on a graph where the slope goes from positive to negative.
 The slope at the point itself is zero
- A relative Minima (min) is a turning point on a graph where the slope goes from negative to positive.
 The slope at the point itself is zero

Lesson 1.5 - Defining Increasing and Decreasing Intervals

<u>Practice</u>: Use DESMOS to graph each function. After graphing determine the intervals upon which the function is increasing, decreasing or constant

23.
$$f(x) = 3$$

Constant (-00,00)

24.
$$f(x) = x$$

(-0,00)

25.
$$f(x) = x^{2/3}$$

Decreasing (-00,0)

27.
$$f(x) = x\sqrt{x+3}$$

decreasing (-3,-2) increasing (-2,00)

28.
$$f(x) = \sqrt{1-x}$$

Decreasing (-0,1)

29.
$$f(x) = |x+1| + |x-1|$$

Decreasing (-00,-1) Constant (-1,1) Increasing (1,00)

1)
$$y = -x^3 + 2x^2 + 2$$

Decreasing (-00,0)
Increasing (0,1.33)
decreasing (1.33,00)

2)
$$y = x^3 - 11x^2 + 39x - 47$$

Increasing (-00,3) decreasy (3,4.33)

Increasy (4.33,00)

3)
$$y = -x^4 + 3x^2 - 3$$
Increasing (-1.225)

alecreasing (-1.225, 0)

Increasing (0, 1.225)

decreasy (1.225,00)

<u>Practice</u>: Use DESMOS to graph each function. After graphing use DESMOS to determine the coordinates of any relative maxima/minima

31.
$$f(x) = x^2 - 6x$$

min: (3,-9)

32.
$$f(x) = 3x^2 - 2x - 5$$

(min: (.33,-5.33)

33.
$$y = 2x^3 + 3x^2 - 12x$$

max: (-2,20)

min: (1,-7)

34.
$$y = x^3 - 6x^2 + 15$$

Max: (0,15)

min (4,-17)

35.
$$h(x) = (x-1)\sqrt{x}$$

min (133,-.38)

(0,0) not a min

36.
$$g(x) = x\sqrt{4-x}$$

max (2.67, 3.08)

37.
$$f(x) = x^2 - 4x - 5$$

min (2,-9)

$$38. \ f(x) = 3x^2 - 12x$$

min (2,-12)

39.
$$f(x) = x^3 - 3x$$

max (-1,2)