Lesson 1.5 - Defining Increasing and Decreasing Intervals

Learning Objectives: SWBAT

- Define increasing and decreasing intervals of a function graph
- Identify the existence of relative maxima/minima of a function given its graph

Review: Identifying Increasing/Decreasing Intervals

- An interval of a function is INCREASING if its slope is positive
- An interval of a function is DECREASING if its slope is negative
- An interval of a function is CONSTANT if its slope is zero
- Always define increasing/decreasing intervals using "x" values (look left to right)
- See the figure below for each case

- This function is decreasing on the interval $[-2,0]$
- This function is constant on the interval $[0,2]$
- This function is increasing on the interval [2. 4]

Your Turn: Define the increasing/decreasing/constant intervals for the following:

Review: Relative Maxima/Minima

- A relative Maxima (max) is a turning point on a graph where the slope goes from positive to negative. The slope at the point itself is zero
- A relative Minima (min) is a turning point on a graph where the slope goes from negative to positive. The slope at the point itself is zero

Lesson 1.5 - Defining Increasing and Decreasing Intervals

Practice: Use DESMOS to graph each function. After graphing determine the intervals upon which the function is increasing, decreasing or constant
23. $f(x)=3$
24. $f(x)=x$
25. $f(x)=x^{2 / 3}$
27. $f(x)=x \sqrt{x+3}$
28. $f(x)=\sqrt{1-x}$
29. $f(x)=|x+1|+|x-1|$

1) $y=-x^{3}+2 x^{2}+2$
2) $y=x^{3}-11 x^{2}+39 x-47$
3) $y=-x^{4}+3 x^{2}-3$

Practice: Use DESMOS to graph each function. After graphing use DESMOS to determine the coordinates of any relative maxima/minima
31. $f(x)=x^{2}-6 x$
32. $f(x)=3 x^{2}-2 x-5$
33. $y=2 x^{3}+3 x^{2}-12 x$
34. $y=x^{3}-6 x^{2}+15$
35. $h(x)=(x-1) \sqrt{x}$
36. $g(x)=x \sqrt{4-x}$
37. $f(x)=x^{2}-4 x-5$
38. $f(x)=3 x^{2}-12 x$
39. $f(x)=x^{3}-3 x$

