Lesson 1.7 - Even and Odd Functions

Learning Objectives: SWBAT

- Explain the difference (graphically) between and even and odd function
- Determine whether or not a given equation is even, odd or neither

A graphic look at Even and Odd Functions:

A graph has symmetry with respect to the y-axis if whenever (x, y) is on the graph, so is the point $(-x, y)$. A graph has symmetry with respect to the origin if whenever (x, y) is on the graph, so is the point $(-x,-y)$. A graph has symmetry with respect to the x-axis if whenever (x, y) is on the graph, so is the point $(x,-y)$. A function whose graph is symmetric with respect to the y-axis is an even function. A function whose graph is symmetric with respect to the origin is an odd function. A graph that is symmetric with respect to the x-axis is not the graph of a function (except for the graph of $y=0$). These three types of symmetry are illustrated in Figure 1.34.

Symmetric to y-axis
Even function

Symmetric to origin
Odd function

Symmetric to x-axis Not a function

Figure 1.34

Test for Even and Odd Functions

A function f is even if, for each x in the domain of $f, f(-x)=f(x)$.
A function f is odd if, for each x in the domain of $f, f(-x)=-f(x)$.
Examples: Determine whether each function is even, odd, or neither.
a. $g(x)=x^{3}-x$
b. $h(x)=x^{2}+1$

Plug (-x) in for x
c. $f(x)=x^{3}-1$
a. This function is odd because

$$
\begin{aligned}
g(-x) & =(-x)^{3}-(-x) \\
& =-x^{3}+x \\
& =-\left(x^{3}-x\right) \\
& =-g(x)
\end{aligned}
$$

b. This function is even because

$$
\begin{aligned}
h(-x) & =(-x)^{2}+1 \\
& =x^{2}+1 \\
& =h(x) .
\end{aligned}
$$

c. Substituting $-x$ for x produces

$$
\begin{aligned}
f(-x) & =(-x)^{3}-1 \\
& =-x^{3}-1 .
\end{aligned}
$$

Because $f(x)=x^{3}-1$ and $-f(x)=-x^{3}+1$, you can conclude that $f(-x) \neq f(x)$ and $f(-x) \neq-f(x)$. So, the function is neither even nor odd.

Lesson 1.7 - Even and Odd Functions

Practice: Determine if the following functions are even, odd or neither. Graph each function on Desmos to verify your answer
59. $f(t)=t^{2}+2 t-3$
60. $f(x)=x^{6}-2 x^{2}+3$
61. $g(x)=x^{3}-5 x$
62. $h(x)=x^{3}-5$
63. $f(x)=x \sqrt{1-x^{2}}$
64. $f(x)=x \sqrt{x+5}$
65. $g(s)=4 s^{2 / 3}$
66. $f(s)=4 s^{3 / 2}$

Find the coordinates of a second point on the graph given the first point and the function is even or odd (each question will have two answers)
67. $\left(-\frac{3}{2}, 4\right)$
68. $\left(-\frac{5}{3},-7\right)$
69. $(4,9)$
70. $(5,-1)$
71. $(x,-y)$
72. $(2 a, 2 c)$

Practice: Determine if the following functions are even, odd or neither. Graph each function on Desmos to verify your answer
73. $f(x)=5$
74. $f(x)=-9$
75. $f(x)=3 x-2$
76. $f(x)=5-3 x$
77. $h(x)=x^{2}-4$
78. $f(x)=-x^{2}-8$

