Lesson 1.9 - Zeros and Multiplicity

Learning Objectives: SWBAT

- · Determine the real zeros of a polynomial algebraically and graphically
- · Determine the multiplicity of a zero of a polynomial
 - > Describe how the zero's multiplicity affects the graph of the zero

It can be shown that for a polynomial function f of degree n, the following statements are true.

- 1. The function f has at most n real zeros. (You will study this result in detail in Section 2.5 on the Fundamental Theorem of Algebra.)
- 2. The graph of f has at most n-1 relative extrema (relative minima or maxima).

Recall that a **zero** of a function f is a number x for which f(x) = 0. Finding the zeros of polynomial functions is one of the most important problems in algebra. You have already seen that there is a strong interplay between graphical and algebraic approaches to this problem. Sometimes you can use information about the graph of a function to help find its zeros. In other cases, you can use information about the zeros of a function to find a good viewing window.

Real Zeros of Polynomial Functions

If f is a polynomial function and a is a real number, the following statements are equivalent.

- 1. x = a is a zero of the function f.
- 2. x = a is a solution of the polynomial equation f(x) = 0.
- 3. (x a) is a factor of the polynomial f(x).
- 4. (a, 0) is an x-intercept of the graph of f.

<u>Example 1</u> - Find all real zeros of the following polynomial algebraically (FACTOR IT!)

Check your answer using DESMOS or graphing calculator

Find all real zeros of $f(x) = x^3 - x^2 - 2x$.

Algebraic Solution

$$f(x) = x^3 - x^2 - 2x$$
 Write original function.
 $0 = x^3 - x^2 - 2x$ Substitute 0 for $f(x)$.
 $0 = x(x^2 - x - 2)$ Remove common monomial factor.
 $0 = x(x - 2)(x + 1)$ Factor completely.

So, the real zeros are x = 0, x = 2, and x = -1, and the corresponding x-intercepts are (0, 0), (2, 0), and (-1, 0).

Check

$$(0)^3 - (0)^2 - 2(0) = 0 x = 0 is a zero. \checkmark$$

$$(2)^3 - (2)^2 - 2(2) = 0 x = 2 is a zero. \checkmark$$

$$(-1)^3 - (-1)^2 - 2(-1) = 0 x = -1 is a zero. \checkmark$$

Graphical Solution

Use a graphing utility to graph $y = x^3 - x^2 - 2x$. In Figure 2.22, the graph appears to have the x-intercepts (0, 0), (2, 0), and (-1, 0). Use the zero or root feature, or the zoom and trace features, of the graphing utility to verify these intercepts. Note that this third-degree polynomial has two relative extrema, at (-0.55, 0.63) and (1.22, -2.11).

Lesson 1.9 - Zeros and Multiplicity

Example 2 - Find all real zeros of the following polynomial algebraically (FACTOR IT!) Check your answer using DESMOS or graphing calculator

Find all real zeros and relative extrema of $f(x) = -2x^4 + 2x^2$.

Solution

 $0 = -2x^4 + 2x^2$ Substitute 0 for f(x). $0 = -2x^2(x^2 - 1)$ Remove common monomial factor. $0 = -2x^2(x-1)(x+1)$

So, the real zeros are x = 0, x = 1, and x = -1, and the corresponding x-intercepts are (0, 0), (1, 0), and (-1, 0), as shown in Figure 2.23. Using the minimum and maximum features of a graphing utility, you can approximate the three relative extrema to be (-0.71, 0.5), (0, 0), and (0.71, 0.5).

Multiplicity:

Repeated Zeros

For a polynomial function, a factor of $(x - a)^k$, k > 1, yields a repeated zero x = a of multiplicity k.

- 1. If k is odd, the graph crosses the x-axis at x = a.
- 2. If k is even, the graph touches the x-axis (but does not cross the xaxis) at x = a.

Your Turn: Determine the multiplicity of each zero in example 2 above. Which zero(s) "pass thru" the graph and which zeros "bounce off' the graph?

Practice:

In Exercises 23-32, find all the real zeros of the polynomial function. Determine the multiplicity of each zero. Use a graphing utility to verify your result.

23.
$$f(x) = x^2 - 25$$

 $0 = (x+5)(x-5)$
 $x = \pm 5$ each mult.

24.
$$f(x) = 49 - x^2$$

$$0 = (-7 + x)(7 - x)$$

$$1 = 17 \text{ each multiply}$$

25.
$$h(t) = t^2 - 6t + 9$$

$$0 = (t-3)(t-3)$$

$$= (t-3)^2 M$$

$$4 = 3 mH^2$$

27.
$$f(x) = x^2 + x - 2$$

 $0 = (x + 2)(x - 1)$
 $x = -2$, 1 each mult 1

28.
$$f(x) = 2x^{2} - 14x + 24$$

29. $f(t) = t^{3} - 4t^{2} + 4t$

0 = $t (t^{2} - 4t + 4t)$

10 = $t (t^{2} - 4t + 4t)$

21. $t = t (t^{2} - 4t + 4t)$

22. $t = t (t^{2} - 4t + 4t)$

23. $t = t (t^{2} - 4t + 4t)$

24. $t = t (t^{2} - 4t + 4t)$

25. $t = t (t^{2} - 4t + 4t)$

26. $t = t (t^{2} - 4t + 4t)$

27. $t = t (t^{2} - 4t + 4t)$

28. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29. $t = t (t^{2} - 4t + 4t)$

29.
$$f(t) = t^3 - 4t^2 + 4t$$

0 = $t(t^2 - 4t + 4)$

0 = $t(t - 2)(t - 2)$

0 = $t(t - 2)^2$
 $t = 0 \text{ mult } 1$
 $t = 2 \text{ mult } 2$

30.
$$f(x) = x^4 - x^3 - 20x^2$$

0 = $x^2(x^2 - x - 20)$

0 = $x^2(x - 5)(x + 4)$
 $x = 0$ mult $x = -4$ mult

Lesson 1.9 - Zeros and Multiplicity

Practice: Determine the real zeros of each polynomial and state its multiplicity.

34.
$$g(x) = 5x^2 - 10x - 5$$

 $5(x^2 - 2x - 1)$
 QF
 $[x = 1 \pm \sqrt{2}]$ each mult 1

35.
$$g(t) = \frac{1}{2}t^4 - \frac{1}{2}$$

0 $2 \frac{1}{2} (t^4 - 1)$

0 $2 \frac{1}{2} (t^2 + 1) (t^2 - 1)$

1 $2 \frac{1}{2} (t^2 + 1) (t^2 + 1) (t^2 - 1)$

1 $2 \frac{1}{2} (t^2 + 1) (t^2 + 1) (t^2 - 1)$

36.
$$y = \frac{1}{4}x^3(x^2 - 9)$$

$$\frac{1}{4} x^3 (x^3 + 3)(x-3)$$

$$x = 0 \text{ mult } 3$$

$$x = 3, -3 \text{ mult } 1$$

37.
$$f(x) = x^{5} + x^{3} - 6x$$

 $0 = 4(x^{2} + x^{2} - 6)$
 $0 = 4(x^{2} + 3)(x^{2} - 2)$
 $4 = 0 \text{ mult } 1$
 $4 = 12 \text{ each mult} 1$

38.
$$g(t) = t^5 - 6t^3 + 9t$$

 $t (t^4 - 6t^2 + 4)$
 $t (t^2 - 3)$
 $t = 0 \mod t + 1$
 $t = \sqrt{3}$ and $t = 1$

39.
$$f(x) = 2x^4 - 2x^2 - 40$$

 $2(x^4 - 2x^2 - 20)$
 $2(x^2 - 5)(x^2 + 4)$
 $x = \pm \sqrt{5} \text{ each mult } 1$

40.
$$f(x) = 5x^4 + 15x^2 + 10$$

$$0 = 5(x^4 + 3x^2 + 2)$$

$$0 = 5(x^2 + 2)(x^2 + 1)$$
The real zeros