Lesson 1.9 - Zeros and Multiplicity

Learning Objectives: SWBAT

- Determine the real zeros of a polynomial algebraically and graphically
- Determine the multiplicity of a zero of a polynomial
> Describe how the zero's multiplicity affects the graph of the zero
It can be shown that for a polynomial function f of degree n, the following statements are true.

1. The function f has at most n real zeros. (You will study this result in detail in Section 2.5 on the Fundamental Theorem of Algebra.)
2. The graph of f has at most $n-1$ relative extrema (relative minima or maxima).

Recall that a zero of a function f is a number x for which $f(x)=0$. Finding the zeros of polynomial functions is one of the most important problems in algebra. You have already seen that there is a strong interplay between graphical and algebraic approaches to this problem. Sometimes you can use information about the graph of a function to help find its zeros. In other cases, you can use information about the zeros of a function to find a good viewing window.

Real Zeros of Polynomial Functions

If f is a polynomial function and a is a real number, the following statements are equivalent.

1. $x=a$ is a zero of the function f.
2. $x=a$ is a solution of the polynomial equation $f(x)=0$.
3. $(x-a)$ is a factor of the polynomial $f(x)$.
4. $(a, 0)$ is an x-intercept of the graph of f.

Example 1 - Find all real zeros of the following polynomial algebraically (FACTOR IT!) Check your answer using DESMOS or graphing calculator

Find all real zeros of $f(x)=x^{3}-x^{2}-2 x$.

Algebraic Solution

$$
\begin{aligned}
f(x) & =x^{3}-x^{2}-2 x \\
0 & =x^{3}-x^{2}-2 x \\
0 & =x\left(x^{2}-x-2\right) \\
0 & =x(x-2)(x+1)
\end{aligned}
$$

Write original function.
Substitute 0 for $f(x)$. Remove common monomial factor. Factor completely.

So, the real zeros are $x=0, x=2$, and $x=-1$, and the corresponding x-intercepts are $(0,0),(2,0)$, and $(-1,0)$.

Check

$$
\begin{array}{ll}
(0)^{3}-(0)^{2}-2(0)=0 & x=0 \text { is a zero. } \\
(2)^{3}-(2)^{2}-2(2)=0 & x=2 \text { is a zero. } \\
(-1)^{3}-(-1)^{2}-2(-1)=0 & x=-1 \text { is a zero. }
\end{array}
$$

Graphical Solution

Use a graphing utility to graph $y=x^{3}-x^{2}-2 x$. In Figure 2.22 , the graph appears to have the x-intercepts $(0,0)$, $(2,0)$, and $(-1,0)$. Use the zero or root feature, or the zoom and trace features, of the graphing utility to verify these intercepts. Note that this third-degree polynomial has two relative extrema, at $(-0.55,0.63)$ and $(1.22,-2.11)$.

Lesson 1.9 - Zeros and Multiplicity

Example 2 - Find all real zeros of the following polynomial algebraically (FACTOR IT!) Check your answer using DESMOS or graphing calculator

Find all real zeros and relative extrema of $f(x)=-2 x^{4}+2 x^{2}$.
Solution

$$
\begin{array}{ll}
0=-2 x^{4}+2 x^{2} & \text { Substitute } 0 \text { for } f(x) \\
0=-2 x^{2}\left(x^{2}-1\right) & \text { Remove common monomial factor. } \\
0=-2 x^{2}(x-1)(x+1) & \text { Factor completely. }
\end{array}
$$

So, the real zeros are $x=0, x=1$, and $x=-1$, and the corresponding x-intercepts are $(0,0),(1,0)$, and $(-1,0)$, as shown in Figure 2.23. Using the minimum and maximum features of a graphing utility, you can approximate the three relative extrema to be $(-0.71,0.5),(0,0)$, and $(0.71,0.5)$.

Multiplicity:

Repeated Zeros

For a polynomial function, a factor of $(x-a)^{k}, k>1$, yields a repeated zero $x=a$ of multiplicity k.

1. If k is odd, the graph crosses the x-axis at $x=a$.
2. If k is even, the graph touches the x-axis (but does not cross the x axis) at $x=a$.

Your Turn: Determine the multiplicity of each zero in example 2 above. Which zero(s) "pass thru" the graph and which zeros "bounce off" the graph?

Practice: In Exercises 23-32, find all the real zeros of the polynomial function. Determine the multiplicity of each zero. Use a graphing utility to verify your result.
23. $f(x)=x^{2}-25$
24. $f(x)=49-x^{2}$
25. $h(t)=t^{2}-6 t+9$
27. $f(x)=x^{2}+x-2$
28. $f(x)=2 x^{2}-14 x+24$
29. $f(t)=t^{3}-4 t^{2}+4 t$
30. $f(x)=x^{4}-x^{3}-20 x^{2}$

Lesson 1.9 - Zeros and Multiplicity

Practice: Determine the real zeros of each polynomial and state its multiplicity.
33. $f(x)=3 x^{2}-12 x+3$
34. $g(x)=5 x^{2}-10 x-5$
35. $g(t)=\frac{1}{2} t^{4}-\frac{1}{2}$
36. $y=\frac{1}{4} x^{3}\left(x^{2}-9\right)$
37. $f(x)=x^{5}+x^{3}-6 x$
38. $g(t)=t^{5}-6 t^{3}+9 t$
39. $f(x)=2 x^{4}-2 x^{2}-40$
40. $f(x)=5 x^{4}+15 x^{2}+10$

