Learning Objectives - SWBAT:

- 1. Define and Evaluate Exponential Functions
- 2. Identify key attributes of exponential function graphs
- 3. Identify transformations from the parent exponential function given an equation
- 4. Write the equation of an exponential function given its transformations

Overview:

So far, this text has dealt mainly with **algebraic functions**, which include polynomial functions and rational functions. In this chapter you will study two types of nonalgebraic functions—exponential functions and logarithmic functions. These functions are examples of **transcendental functions**.

Definition of Exponential Function

The exponential function f with base a is denoted by

$$f(x) = a^x$$

where a > 0, $a \ne 1$, and x is any real number.

Note that in the definition of an exponential function, the base a=1 is excluded because it yields $f(x)=1^x=1$. This is a constant function, not an exponential function.

You have already evaluated a^x for integer and rational values of x. For example, you know that $4^3 = 64$ and $4^{1/2} = 2$. However, to evaluate 4^x for any real number x, you need to interpret forms with *irrational* exponents. For the purposes of this text, it is sufficient to think of

$$a^{\sqrt{2}}$$
 (where $\sqrt{2} \approx 1.41421356$)

as the number that has the successively closer approximations

$$a^{1.4}$$
, $a^{1.41}$, $a^{1.414}$, $a^{1.4142}$, $a^{1.41421}$,

Example 1 shows how to use a calculator to evaluate exponential functions.

Example 1: Evaluating Exponential Functions

Use a calculator to evaluate each function at the indicated value of x.

	Function	Value	
a.	$f(x) = 2^x$	x = -3.1	
b.	$f(x) = 2^{-x}$	$x = \pi$	
c.	$f(x) = 0.6^x$	$x=\frac{3}{2}$	

Solution

Function Value	Graphing Calculator Keystrokes	Display
a. $f(-3.1) = 2^{-3.1}$	2 ^ (-) 3.1 (ENTER)	0.1166291
b. $f(\pi) = 2^{-\pi}$	2 $^{\wedge}$ $^{(\!-\!)}$ $^{\pi}$ $^{(\!-\!)}$ ENTER	0.1133147
c. $f(\frac{3}{2}) = (0.6)^{3/2}$.6 ^ (3 ÷ 2) ENTER	0.4647580

Library of Parent Functions: Exponential Function

The exponential function

$$f(x) = a^x, a > 0, a \neq 1$$

is different from all the functions you have studied so far because the variable x is an *exponent*. A distinguishing characteristic of an exponential function is its rapid increase as x increases (for a > 1). Many real-life phenomena with patterns of rapid growth (or decline) can be modeled by exponential functions. The basic characteristics of the exponential function are summarized below. A review of exponential functions can be found in the *Study Capsules*.

Graph of $f(x) = a^x$, a > 1

Graph of $f(x) = a^{-x}$, a > 1

Domain: $(-\infty, \infty)$

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Range: $(0, \infty)$ Intercept: (0, 1)

Intercept: (0, 1)Increasing on $(-\infty, \infty)$

Decreasing on $(-\infty, \infty)$

x-axis is a horizontal asymptote

x-axis is a horizontal asymptote

 $(a^x \rightarrow 0 \text{ as } x \rightarrow -\infty)$

 $(a^{-x} \rightarrow 0 \text{ as } x \rightarrow \infty)$ Continuous

Continuous

<u>Transformations of $g(x) = b^x$ (c > 0)</u>: (Order of transformations is H S R V.)

Horizontal: $g(x) = b^{x+c}$ (graph moves c units left)

 $g(x) = b^{x-c}$ (graph moves c units right)

Stretch/Shrink:

 $g(x) = cb^x$ (graph stretches if c > 1)

(Vertical) (graph shrinks if 0 < c < 1)

Stretch/Shrink:

(Horizontal)

 $g(x) = b^{cx}$ (graph shrinks if c > 1)

(graph stretches if 0 < c < 1)

Reflection: $g(x) = -b^x$ (graph reflects over the x-axis)

 $g(x) = b^{-x}$ (graph reflects over the y-axis)

Vertical: $g(x) = b^x + c$ (graph moves up c units)

 $g(x) = b^x - c$ (graph moves down c units)

Transformations of Exponential Functions

Each of the following graphs is a transformation of the graph of $f(x) = 3^x$.

- **a.** Because $g(x) = 3^{x+1} = f(x+1)$, the graph of g can be obtained by shifting the graph of f one unit to the *left*, as shown in Figure 3.5.
- **b.** Because $h(x) = 3^x 2 = f(x) 2$, the graph of h can be obtained by shifting the graph of f downward two units, as shown in Figure 3.6.
- **c.** Because $k(x) = -3^x = -f(x)$, the graph of k can be obtained by *reflecting* the graph of f in the x-axis, as shown in Figure 3.7.
- **d.** Because $j(x) = 3^{-x} = f(-x)$, the graph of j can be obtained by *reflecting* the graph of f in the y-axis, as shown in Figure 3.8.

 $f(x) = 3^{x} \left| \frac{1}{3} h(x) = 3^{x} - 2 \right|$ $-3 \quad y = -2$

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Notice that the transformations in Figures 3.5, 3.7, and 3.8 keep the x-axis (y = 0) as a horizontal asymptote, but the transformation in Figure 3.6 yields a new horizontal asymptote of y = -2. Also, be sure to note how the y-intercept is affected by each transformation.

Practice

State the domain and range of the following exponential functions:

(a)
$$f(x) = 2^x$$
 domain: _____

(b)
$$g(x) = \left(\frac{1}{2}\right)^x$$
 domain: _____

range: _____

range: _____

3.
$$f(x) = 3^x$$

4.
$$f(x) = -(3^x)$$

4.
$$f(x) = -(3^x)$$
 5. $f(x) = 3^{-x}$

$$6. \quad f(x) = \left(\frac{1}{3}\right)^x$$

domain: _____

domain: _____ domain: _____

range: _____ range: ____ range: ____

Identify each transformation from the parent function of $f(x)=B^x$. Tell if the function is a decay or growth function.

1.
$$g(x)=3^{x-2}$$

2.
$$g(x) = \frac{1}{2}^{x} + 3$$

3. $g(x) = -4^x - 6$

4.
$$q(x) = -\frac{2^{x-5}}{3} + 4$$

5.
$$g(x)=2^{x-7}+5$$

6.
$$g(x)=3(2^{x+1})+2$$

Write the function for each graph described below.

7. the graph of
$$f(x) = 2^x$$
, reflected across the x axis.

8. The graph of
$$f(x)=\overline{3}$$
, translated up 5 units.

9. The graph of
$$f(x) = 3^x$$
, left 2 units, and down 3.

10. The graph of
$$f(x) = \frac{1}{2}^x$$
 translated down 2 units

11. The graph of
$$f(x) = 4^x$$
, stretched horizontally by a factor of 3

12. The graph of
$$f(x) = 2^x$$
, up 4 units, right 3

Practice

- 1) Describe the transformations that map the function $y = 2^x$ onto each of the following functions...
- **a)** $y = 2^x 2$
- **b)** $y = 2^{x+3}$
- **c)** $y = 4^x$ **d)** $y = 3(2^{x-1}) + 1$
- 3) Write the equation for the function that results from each transformation applied to the base function $y = 5^{x}$.
- a) translate down 3 units

b) shift right 2 units

c) translate left $\frac{1}{2}$ unit

- d) shift up 1 unit and left 2.5 units
- 4) Write the equation for the function that results from each transformation applied to the base function $f(x) = \left(\frac{1}{3}\right)^x$
- a) reflect in the x- axis (vertical reflection)
- b) stretch vertically by a factor of 3

- c) stretch horizontally by a factor of 2.4
- d) reflect horizontally, stretch vertically by factor of 4

Without a calculator, match each function with its graph.

$$_{1} f(x) = 5^x$$

2]
$$f(x) = -5^{-x}$$

____3]
$$f(x) = -5^{x-1}$$

$$4] f(x) = 5^{-x} + 1$$

$$_{5}$$
 $f(x) = 5^{x+1}$

____6]
$$f(x) = -5^x - 1$$

