Lesson 2.3 - The Basics of Logarithms

Learning Objective: SWBAT:

- Describe the relationship between an Exponential function and a Logarithmic Function
- 2. Convert an exponential equation into logarithmic form and vice versa.

What is a Logarithm?

- · A logarithm is the INVERSE of an exponential function
- · A logarithm answers the question:
 - > "What power would we raise a given base to in order to equal another given number?"
 - > As an example, for the equation $3^x = 15$ logarithms will help us determine the power needed to raise the base 3 so that it equals 15.
- The "parent" equation of logarithmic functions is f(x) = log_b x where "b" the base of the corresponding exponential equation inverse.
- · Logarithms create a way for us to solve for an exponent
- · We will explore graphs and transformations of logarithms in 2.4

Exponential and Logarithmic Form

 The example below, outlines the relationship between the standard forms of exponential and logarithmic equations

Example 1 - Rewrite the exponential expression $2^3 = 8$ in Logarithmic form:

a logarithm answers a question like this: $2^{?} = 8$

Your Turn #1: Rewrite the following expressions in Logarithmic form:

1.3⁴ = 81 2.2⁶ = 64 3.5⁻² =
$$\frac{1}{25}$$
 4.8 ^{$\frac{1}{3}$} = 2 $\log_2 64 = 6$ $\log_2 64 = 6$ $\log_3 81 = 4$ \log_3

Your Turn #2: Re-write the following expressions in Exponential form:

7.
$$\log_7 49 = 2$$
 8. $\log_{10} 10,000 = 4$ 9. $\log_2 32 = 5$ 10. $\log_{25} 5 = \frac{1}{2}$

$$7 = 49$$

$$10^4 = 10,000$$

$$2^5 = 32$$

$$25^{1/6} = 5$$

Lesson 2.3 - The Basics of Logarithms

Practice

Rewrite each equation in exponential form.

1)
$$\log_6 36 = 2$$

3)
$$\log_{14} \frac{1}{196} = -2$$

2)
$$\log_{289} 17 = \frac{1}{2}$$

 $284^{4e} = 17$

4)
$$\log_3 81 = 4$$

Rewrite each equation in logarithmic form.

5)
$$64^{\frac{1}{2}} = 8$$

7)
$$9^{-2} = \frac{1}{81}$$
 $\log_{10} 81 = -2$

Rewrite each equation in exponential form.

9)
$$\log_u \frac{15}{16} = v$$

$$11) \log_{\underline{7}} x = y$$

11)
$$\log_{\frac{7}{4}} x = y$$

$$\left(\frac{7}{4}\right)^{\frac{3}{4}} = x$$

13)
$$\log_{u} \nu = -16$$

Rewrite each equation in logarithmic form.

19)
$$9^y = x$$

6)
$$12^2 = 144$$

8)
$$\left(\frac{1}{12}\right)^2 = \frac{1}{144}$$

8)
$$\left(\frac{1}{12}\right)^2 = \frac{1}{144}$$
 / $\log_{\frac{1}{2}} \frac{1}{144} = 2$

10)
$$\log_{10} u = 4$$

12)
$$\log_2 v = u$$

14)
$$\log_{y} x = -8$$

16)
$$8^b = a / \log_8 a = 6$$

20)
$$b^a = 123$$