Lesson 2.6 - The change of Base Formula

Learning Objectives - SWBAT:

Use the change of base formula to evaluate logarithms that are not in base 10

Making a connection

- · Thus far, we have learned how to evaluate logarithms that are either base 10 OR that are "nice" to work with
 - > For example: $Log_2 8 = 3$ because $2^3 = 8$ (the numbers workout "nicely")
- · As we all know, not all numbers play nicely.
 - > For example, what is log₂ 15?
 - We know that we can raise 2 to some (unknown) power to get 15
 - We also know that this power must be between 3 and 4 because $2^3 = 8$ and $2^4 = 16$ (and 15 is between 8 and 16)
- For these situations, we use the change of base formula to determine the exponent of a log that is not an integer

Change-of-Base Formula

For any positive real numbers $a \ne 1$, $b \ne 1$, and x > 0:

$$\log_b x = \frac{\log_b x}{\log_a b}$$

- Example: what is log₂ 15
 - > When using the formula, it does not matter what base you use as long as you use the same base for the top and bottom
 - > For our purposes, I recommend you use base 10, which is just the default log on your calculator
 - « Set up using formula: $\frac{\log 15}{\log 2}$ Then put in calculator... 3.90689059561
 - > What the answer "means" is that $2^{3.90689059561} = 15$ (please check using calc.)
 - > For our purposes, please round three decimal places

Practice

Use a calculator to approximate each to the nearest thousandth.

1)
$$\log_3 3.3 \quad \frac{\log 3.3}{\log 3} = 1.087$$

$$\frac{\log_2 30}{\log_2 2} = 4.907$$

.055

4)
$$\log_2 2.1$$
 $\frac{\log 2.1}{\log 2} = 1.07$

Lesson 2.6 - The change of Base Formula

Practice

7) log₆ 40

2.059

8) log₄ 3.5

.904

9) log₂ 2.9

1,536

10) log₆ 22

1.725

11) log₇ 8.7

1.112

12) log₃ 62

3.757

15) log₂ 8.7

3.121

16) log₉ 71

1.94

19) log₁₃ 12.9

.997

20) log₅ 10.818

1.48

21) log₃ 189

4.771

22) log 16 194

1.9

23) log₅ 183

3.237

24) log₁₄ 2.6

.362