Learning Objectives - SWBAT:

Solve Logarithmic Equations

Solving Logarithmic Equations

To solve a logarithmic equation, you can write it in exponential form.

$$\ln x = 3$$

Logarithmic form

$$e^{\ln x} = e^3$$

Exponentiate each side

$$x = e^3$$

Exponential form

This procedure is called exponentiating each side of an equation. It is applied after the logarithmic expression has been isolated.

Example 6 Solving Logarithmic Equations

Solve each logarithmic equation.

$$a. \ln 3x = 2$$

a.
$$\ln 3x = 2$$
 b. $\log_3(5x - 1) = \log_3(x + 7)$

Solution

Your Turn

a.
$$\ln 3x = 2$$

Write original equation.

87. $\ln 4x = 2.1$ $\times = 2.042$

92. $\log_0(4 + x) = \log_0(2x - 1)$

Your Turn

89. $-2 + 2 \ln 3x = 17$

X=4,453.242

$$e^{\ln 3x} = e^2$$

Exponentiate each side.

$$3x = e^2$$

Inverse Property

$$x = \frac{1}{3}e^2 \approx 2.46$$

Multiply each side by 1.

The solution is $x = \frac{1}{3}e^2 \approx 2.46$. Check this in the original equation.

b.
$$\log_3(5x-1) = \log_3(x+7)$$

Write original equation.

$$5x - 1 = x + 7$$

One-to-One Property

$$x = 2$$

Solve for x.

The solution is x = 2. Check this in the original equation.

Example 7 Solving a Logarithmic Equation

Solve
$$5 + 2 \ln x = 4$$
.

Algebraic Solution

$$5 + 2 \ln x = 4$$

Write original equation.

$$2 \ln x = -1$$

Subtract 5 from each side.

$$\ln x = -\frac{1}{2}$$

Divide each side by 2.

$$e^{\ln x} = e^{-1/2}$$

Exponentiate each side.

$$x = e^{-1/2}$$

Inverse Property

$$x \approx 0.61$$

Use a calculator.

The solution is $x = e^{-1/2} \approx 0.61$. Check this in the original equation.

Example 8 Solving a Logarithmic Equation

Your Turn

Solve $2 \log_5 3x = 4$.

95. $7 \log_4(0.6x) = 12$

X=17.945

Solution

 $2 \log_5 3x = 4$ Write original equation.

 $\log_5 3x = 2$ Divide each side by 2.

 $5^{\log_5} 3x = 5^2$ Exponentiate each side (base 5).

3x = 25Inverse Property $x = \frac{25}{2}$

Divide each side by 3.

96. $4 \log_{10}(x-6) = 11$

X=568,341

Example 9 Checking for Extraneous Solutions

Solve $\ln(x - 2) + \ln(2x - 3) = 2 \ln x$.

Algebraic Solution

ln(x-2) + ln(2x-3) = 2 ln x

 $\ln[(x-2)(2x-3)] = \ln x^2$

 $ln(2x^2 - 7x + 6) = ln x^2$

 $2x^2 - 7x + 6 = x^2$

 $x^2 - 7x + 6 = 0$

(x-6)(x-1)=0

x - 6 = 0 x = 6

x - 1 = 0 x = 1

Write original equation.

Use properties of logarithms.

Multiply binomials.

One-to-One Property

Write in general form.

Factor.

Set 1st factor equal

Set 2nd factor equal

Finally, by checking these two "solutions" in the original equation, you can conclude that x = 1 is not valid. This is because when x = 1, ln(x-2) + ln(2x-3) = ln(-1) + ln(-1), which is invalid because -1 is not in the domain of the natural logarithmic function. So, the only solution is x = 6.

Your Turn

103. $\ln(x+5) = \ln(x-1) - \ln(x+1)$

No Solution: Both - 2 and - 3

are extraneous

104. $\ln(x+1) - \ln(x-2) = \ln x$

3.303 3-1/3 15 extraneous

Practice 1 - Solve the Logarithmic equation

1)
$$\log (3x-9) = \log (2x+6)$$

2)
$$\log (-4n + 7) = \log 3n$$

3)
$$\log n = \log 12$$

4)
$$\log (5x-7) = \log (3x-1)$$

5)
$$1 + \log_5 -9b = 4$$

6)
$$-7\log_4 -10r = -14$$

7)
$$4\log_{11}(r+8)=8$$

8)
$$\log_3(x+1)-5=-5$$

9)
$$\log_{18} (3k^2 - 5k) = \log_{18} (-6 + 2k^2)$$

10)
$$\log_{14} (6\nu - 1) = \log_{14} (\nu^2 - 17)$$

11)
$$\log_{19} (7-3r^2) = \log_{19} (-2r^2-6r)$$

12)
$$\log_{14} (-32 - 3n) = \log_{14} (n^2 + 9n)$$

Practice 2 - Solve the Logarithmic equation, round 3 decimal places.

1)
$$\log x - \log 2 = \log 17$$

2)
$$\log 8 + \log x = 1$$

3)
$$\log 3 + \log x = 2$$

4)
$$\log x - \log 2 = 1$$

Practice 3 - Solve the Logarithmic equation, use fractions if necessary.

5)
$$\log_8 (x^2 - 1) - \log_8 3 = 1$$

6)
$$\log 3x^2 - \log 3 = 2$$

7)
$$\log_8 4x - \log_8 5 = \log_8 39$$

8)
$$\log_7(x+4) - \log_7 x = 3$$

9)
$$\ln (5-2x) + \ln 9 = 4$$

10)
$$\ln (3x-1) + \ln 4 = \ln 15$$

11)
$$\ln (10 - 2x^2) - \ln 5 = \ln 2$$

12)
$$\ln 5 - \ln (4 - 4x) = \ln 33$$

$$\chi = \frac{127}{143}$$