Lesson 2.9 - Solving Logarithmic Equations

Learning Objectives - SWBAT:

1. Solve Logarithmic Equations

Solving Logarithmic Equations

To solve a logarithmic equation, you can write it in exponential form.

$$
\begin{aligned}
\ln x & =3 & & \text { Logarithmic form } \\
e^{\ln x} & =e^{3} & & \text { Exponentiate each side. } \\
x & =e^{3} & & \text { Exponential form }
\end{aligned}
$$

This procedure is called exponentiating each side of an equation. It is applied after the logarithmic expression has been isolated.

Example 6 Solving Logarithmic Equations

Solve each logarithmic equation.
a. $\ln 3 x=2$
b. $\log _{3}(5 x-1)=\log _{3}(x+7)$

Solution
Your Turn
a. $\ln 3 x=2$

Write original equation.
87. $\ln 4 x=2.1$

$$
\begin{aligned}
e^{\ln 3 x} & =e^{2} & & \text { Exponentiate each side. } \\
3 x & =e^{2} & & \text { Inverse Property } \\
x & =\frac{1}{3} e^{2} \approx 2.46 & & \text { Multiply each side by } \frac{1}{3} .
\end{aligned}
$$

The solution is $x=\frac{1}{3} e^{2} \approx 2.46$. Check this in the original equation.
b. $\log _{3}(5 x-1)=\log _{3}(x+7)$
Write original equation.
92. $\log _{9}(4+x)=\log _{9}(2 x-1)$
$5 x-1=x+7$
One-to-One Property
$x=2$
Solve for x.

The solution is $x=2$. Check this in the original equation.

Example 7 Solving a Logarithmic Equation

Solve $5+2 \ln x=4$.

Algebraic Solution

$$
\begin{aligned}
5+2 \ln x & =4 & & \text { Write original equation. } \\
2 \ln x & =-1 & & \text { Subtract } 5 \text { from each side. } \\
\ln x & =-\frac{1}{2} & & \text { Divide each side by } 2 . \\
e^{\ln x} & =e^{-1 / 2} & & \text { Exponentiate each side. } \\
x & =e^{-1 / 2} & & \text { Inverse Property } \\
x & \approx 0.61 & & \text { Use a calculator. }
\end{aligned}
$$

Your Turn
89. $-2+2 \ln 3 x=17$

The solution is $x=e^{-1 / 2} \approx 0.61$. Check this in the original equation.

Lesson 2.9 - Solving Logarithmic Equations

Example 8 Solving a Logarithmic Equation

Your Turn
Solve $2 \log _{5} 3 x=4$.
95. $7 \log _{4}(0.6 x)=12$

Solution

$$
\begin{aligned}
2 \log _{5} 3 x & =4 & & \text { Write original equation. } \\
\log _{5} 3 x & =2 & & \text { Divide each side by } 2 . \\
5^{\log _{5} 3 x} & =5^{2} & & \text { Exponentiate each side } \\
3 x & =25 & & \text { Inverse Property } \\
x & =\frac{25}{3} & & \text { Divide each side by } 3 .
\end{aligned}
$$

Example 9 Checking for Extraneous Solutions

Solve $\ln (x-2)+\ln (2 x-3)=2 \ln x$.

Algebraic Solution

$$
\begin{aligned}
\ln (x-2)+\ln (2 x-3) & =2 \ln x & & \begin{array}{l}
\text { Write original } \\
\text { equation. }
\end{array} \\
\ln [(x-2)(2 x-3)] & =\ln x^{2} & & \begin{array}{l}
\text { Use properties of } \\
\text { logarithms. }
\end{array} \\
\ln \left(2 x^{2}-7 x+6\right) & =\ln x^{2} & & \begin{array}{l}
\text { Multiply binomials. }
\end{array} \\
2 x^{2}-7 x+6 & =x^{2} & & \text { One-to-One Property } \\
x^{2}-7 x+6 & =0 & & \text { Write in general form. } \\
(x-6)(x-1) & =0 & & \begin{array}{l}
\text { Factor. } \\
\text { Set 1st factor equal } \\
\text { to 0. }
\end{array} \\
x-6 & =0 & \square x=6 & \begin{array}{l}
\text { Set 2nd factor equal } \\
\text { to } 0 .
\end{array}
\end{aligned}
$$

Finally, by checking these two "solutions" in the original equation, you can conclude that $x=1$ is not valid. This is because when $x=1$, $\ln (x-2)+\ln (2 x-3)=\ln (-1)+\ln (-1)$, which is invalid because -1 is not in the domain of the natural logarithmic function. So, the only solution is $x=6$.

Your Turn
103. $\ln (x+5)=\ln (x-1)-\ln (x+1)$
104. $\ln (x+1)-\ln (x-2)=\ln x$

Lesson 2.9 - Solving Logarithmic Equations

Practice 1 - Solve the Logarithmic equation

1) $\log (3 x-9)=\log (2 x+6)$
2) $\log (-4 n+7)=\log 3 n$
3) $\log n=\log 12$
4) $\log (5 x-7)=\log (3 x-1)$
5) $1+\log _{5}-9 b=4$
6) $-7 \log _{4}-10 r=-14$
7) $4 \log _{11}(r+8)=8$
8) $\log _{3}(x+1)-5=-5$
9) $\log _{18}\left(3 k^{2}-5 k\right)=\log _{18}\left(-6+2 k^{2}\right)$
10) $\log _{14}(6 v-1)=\log _{14}\left(v^{2}-17\right)$
11) $\log _{19}\left(7-3 r^{2}\right)=\log _{19}\left(-2 r^{2}-6 r\right)$
12) $\log _{14}(-32-3 n)=\log _{14}\left(n^{2}+9 n\right)$

Lesson 2.9 - Solving Logarithmic Equations

Practice 2-Solve the Logarithmic equation, round 3 decimal places.

1) $\log x-\log 2=\log 17$
2) $\log 8+\log x=1$
3) $\log 3+\log x=2$
4) $\log x-\log 2=1$

Practice 3 - Solve the Logarithmic equation, use fractions if necessary.
5) $\log _{8}\left(x^{2}-1\right)-\log _{8} 3=1$
6) $\log 3 x^{2}-\log 3=2$
7) $\log _{8} 4 x-\log _{8} 5=\log _{8} 39$
8) $\log _{7}(x+4)-\log _{7} x=3$
9) $\ln (5-2 x)+\ln 9=4$
10) $\ln (3 x-1)+\ln 4=\ln 15$
11) $\ln \left(10-2 x^{2}\right)-\ln 5=\ln 2$
12) $\ln 5-\ln (4-4 x)=\ln 33$

