Lesson 3.43 - Vector Operations

Learning Objectives: SWBAT

- 1. Apply addition, subtraction and scalar multiplication on vectors
- 2. Find the unit vector in the direction of a vector (v)

<u>Addition and Scalar Multiplication Examples:</u> Notice how each example relates to the corresponding graph

Let $v = \langle -2, 5 \rangle$ and $w = \langle 3, 4 \rangle$, and find each of the following vectors.

a. 2v

h. w - v

 $c_x v + 2w$

d. 2v - 3w

Solution

a. Because $\mathbf{v} = \langle -2, 5 \rangle$, you have

$$2\mathbf{v} = 2\langle -2, 5 \rangle$$
$$= \langle 2(-2), 2(5) \rangle$$
$$= \langle -4, 10 \rangle.$$

A sketch of 2v is shown in Figure 6.22.

Figure 6.22

b. The difference of w and v is

$$\mathbf{w} - \mathbf{v} = \langle 3 - (-2), 4 - 5 \rangle$$
$$= \langle 5, -1 \rangle.$$

A sketch of w - v is shown in Figure 6.23. Note that the figure shows the vector difference w - v as the sum w + (-v).

Figure 6.23

c. The sum of v and 2w is

$$\mathbf{v} + 2\mathbf{w} = \langle -2, 5 \rangle + 2\langle 3, 4 \rangle$$

$$= \langle -2, 5 \rangle + \langle 2(3), 2(4) \rangle$$

$$= \langle -2, 5 \rangle + \langle 6, 8 \rangle$$

$$= \langle -2 + 6, 5 + 8 \rangle$$

$$= \langle 4, 13 \rangle.$$

A sketch of v + 2w is shown in Figure 6.24.

Figure 6.24

d. The difference of 2v and 3w is

$$2\mathbf{v} - 3\mathbf{w} = 2\langle -2, 5 \rangle - 3\langle 3, 4 \rangle$$

$$= \langle 2(-2), 2(5) \rangle - \langle 3(3), 3(4) \rangle$$

$$= \langle -4, 10 \rangle - \langle 9, 12 \rangle$$

$$= \langle -4 - 9, 10 - 12 \rangle$$

$$= \langle -13, -2 \rangle.$$

A sketch of 2v - 3w is shown in Figure 6.25. Note that the figure shows the vector difference 2v - 3w as the sum 2v + (-3w).

Figure 6.25

Lesson 3.13 - Vector Operations

Practice In Exercises 25-30, find (a) u + v, (b) u - v, (c) 2u - 3v, and (d) v + 4u.

25.
$$\mathbf{u} = \langle 4, 2 \rangle, \ \mathbf{v} = \langle 7, 1 \rangle$$

26.
$$\mathbf{u} = \langle 5, 3 \rangle, \ \mathbf{v} = \langle -4, 0 \rangle$$

27.
$$\mathbf{u} = \langle -6, -8 \rangle, \ \mathbf{v} = \langle 2, 4 \rangle$$

28.
$$\mathbf{u} = \langle 0, -5 \rangle, \ \mathbf{v} = \langle -3, 9 \rangle$$

Lesson 3.13 - Vector Operations

Practice

Find the component form of the resultant vector.

1)
$$\vec{u} = \langle 20, -21 \rangle$$

Find: $-3\vec{u}$

2) Given:
$$P = (0, -4)$$
 $Q = (-1, 9)$
Find: $8\overrightarrow{PQ}$

3)
$$\vec{u} = \langle 3, 3 \rangle$$

 $\vec{v} = \langle 11, 8 \rangle$
Find: $\vec{u} + \vec{v}$

4) Given:
$$P = (-7, -6)$$
 $Q = (6, 10)$

$$R = (-3, -9)$$
 $S = (-3, 7)$
Find: $\overrightarrow{PQ} + \overrightarrow{RS}$

5)
$$\overrightarrow{f} = \langle 12, 2 \rangle$$

 $\overrightarrow{v} = \langle 2, 4 \rangle$
Find: $4\overrightarrow{f} - 6\overrightarrow{v}$

6) Given:
$$T = (-3, 8) \ X = (3, 10)$$

 $Y = (-4, -7) \ Z = (-8, -10)$
Find: $4\overrightarrow{TX} + \overrightarrow{YZ}$

7) Given:
$$A = (9, 3)$$
 $B = (-9, -9)$
 $C = (-4, 10)$ $D = (5, 5)$
Find: $-\overrightarrow{AB} + \overrightarrow{CD}$

8) Given:
$$A = (-6, 0)$$
 $B = (-4, -1)$
 $C = (7, 5)$ $D = (4, 4)$
Find: $7\overrightarrow{AB} - 5\overrightarrow{CD}$

Lesson 3.13 - Vector Operations

Unit Vectors

In many applications of vectors, it is useful to find a unit vector that has the same direction as a given nonzero vector \mathbf{v} . To do this, you can divide \mathbf{v} by its length to obtain

$$\mathbf{u} = \text{unit vector} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(\frac{1}{\|\mathbf{v}\|}\right)\mathbf{v}.$$
 Unit vector in di

Note that u is a scalar multiple of v. The vector u has a magnitude of 1 and the same direction as v. The vector u is called a unit vector in the direction of v.

Example: Find a unit vector in the direction of $\mathbf{v} = \langle -2, 5 \rangle$ and verify that the result has a magnitude of 1.

Solution

The unit vector in the direction of v is

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\langle -2, 5 \rangle}{\sqrt{(-2)^2 + (5)^2}}$$

$$= \frac{1}{\sqrt{29}} \langle -2, 5 \rangle$$

$$= \left\langle \frac{-2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \right\rangle = \left\langle \frac{-2\sqrt{29}}{29}, \frac{5\sqrt{29}}{29} \right\rangle.$$

This vector has a magnitude of 1 because

$$\sqrt{\left(\frac{-2\sqrt{29}}{29}\right)^2 + \left(\frac{5\sqrt{29}}{29}\right)^2} = \sqrt{\frac{116}{841} + \frac{725}{841}} = \sqrt{\frac{841}{841}} = 1.$$

Practice In Exercises 35-44, find a unit vector in the direction of the given vector.

35.
$$\mathbf{u} = (6, 0)$$

36.
$$\mathbf{u} = \langle 0, -2 \rangle$$

37.
$$\mathbf{v} = \langle -1, 1 \rangle$$

38.
$$y = (3, -4)$$

39.
$$\mathbf{v} = (-24, -7)$$

40.
$$v = \langle 8, -20 \rangle$$