Lesson 3.12 - Vector Operations

Learning Objectives: SWBAT

1. Apply addition, subtraction and scalar multiplication on vectors
2. Find the unit vector in the direction of a vector (v)

Addition and Scalar Multiplication Examples: Notice how each example relates to the corresponding graph

Let $\mathbf{v}=\langle-2,5\rangle$ and $\mathbf{w}=\langle 3,4\rangle$, and find each of the following vectors.
a. 2 v
b. $\mathbf{w}-\mathrm{v}$
c. $\mathbf{v}+2 \mathbf{w}$
d. $2 \mathbf{v}-3 \mathbf{w}$

Solution

a. Because $\mathbf{v}=\langle-2,5\rangle$, you have

$$
\begin{aligned}
2 \mathbf{v} & =2\langle-2,5\rangle \\
& =\langle 2(-2), 2(5)\rangle \\
& =\langle-4,10\rangle .
\end{aligned}
$$

A sketch of $2 \mathbf{v}$ is shown in Figure 6.22.

Figure 6.22
b. The difference of \mathbf{w} and \mathbf{v} is

$$
\begin{aligned}
\mathbf{w}-\mathbf{v} & =\langle 3-(-2), 4-5\rangle \\
& =\langle 5,-1\rangle .
\end{aligned}
$$

A sketch of $\mathbf{w}-\mathbf{v}$ is shown in Figure 6.23. Note that the figure shows the vector difference $\mathbf{w}-\mathbf{v}$ as the sum $\mathbf{w}+(-\mathbf{v})$.

Figure 6.23
c. The sum of \mathbf{v} and $2 \mathbf{w}$ is

$$
\begin{aligned}
\mathbf{v}+2 \mathbf{w} & =\langle-2,5\rangle+2\langle 3,4\rangle \\
& =\langle-2,5\rangle+\langle 2(3), 2(4)\rangle \\
& =\langle-2,5\rangle+\langle 6,8\rangle \\
& =\langle-2+6,5+8\rangle \\
& =\langle 4,13\rangle .
\end{aligned}
$$

A sketch of $\mathbf{v}+2 \mathbf{w}$ is shown in Figure 6.24.

Figure 6.24
d. The difference of $2 \mathbf{v}$ and $3 \mathbf{w}$ is

$$
\begin{aligned}
2 \mathbf{v}-3 \mathbf{w} & =2\langle-2,5\rangle-3\langle 3,4\rangle \\
& =\langle 2(-2), 2(5)\rangle-\langle 3(3), 3(4)\rangle \\
& =\langle-4,10\rangle-\langle 9,12\rangle \\
& =\langle-4-9,10-12\rangle \\
& =\langle-13,-2\rangle .
\end{aligned}
$$

A sketch of $2 \mathbf{v}-3 \mathbf{w}$ is shown in Figure 6.25 . Note that the figure shows the vector difference $2 \mathbf{v}-3 \mathbf{w}$ as the sum $2 \mathbf{v}+(-3 \mathbf{w})$.

Figure 6.25

Lesson 3.12 - Vector Operations

Practice In Exercises 25-30, find (a) $u+v$, (b) $u-v$, (c) $2 u-3 v$, and (d) $v+4 u$.
25. $\mathbf{u}=\langle 4,2\rangle, \mathbf{v}=\langle 7,1\rangle$
26. $\mathbf{u}=\langle 5,3\rangle, \mathbf{v}=\langle-4,0\rangle$
27. $\mathbf{u}=\langle-6,-8\rangle, \mathbf{v}=\langle 2,4\rangle$
28. $\mathbf{u}=\langle 0,-5\rangle, \mathbf{v}=\langle-3,9\rangle$

Lesson 3.12 - Vector Operations

Practice

Find the component form of the resultant vector.

1) $\vec{u}=\langle 20,-21\rangle$

Find: $-3 \vec{u}$
2) Given: $P=(0,-4) \quad Q=(-1,9)$
Find: $8 \overrightarrow{P Q}$
3) $\vec{u}=\langle 3,3\rangle$
$\vec{v}=\langle 11,8\rangle$
Find: $\vec{u}+\vec{v}$
5) $\vec{f}=\langle 12,2\rangle$
$\vec{v}=\langle 2,4\rangle$
Find: $4 \vec{f}-6 \vec{v}$
6) Given: $T=(-3,8) X=(3,10)$
$Y=(-4,-7) \quad Z=(-8,-10)$
Find: $4 \overrightarrow{T X}+\overrightarrow{Y Z}$
7) Given: $A=(9,3) B=(-9,-9)$

Find: $-\frac{C}{-\overrightarrow{A B}}+\left(-\frac{4}{C D}, 10\right) \quad D=(5,5)$
8) Given: $A=(-6,0) \quad B=(-4,-1)$

Find: $7 \underset{A \overrightarrow{A B}-5 \overrightarrow{C D}}{C=(7,5)} D=(4,4)$
4) Given: $\begin{aligned} P & =(-7,-6) \quad Q=(6,10) \\ \frac{R}{} & =(-3,-9) \\ \text { Find: } & S Q(-3,7)\end{aligned}$

Lesson 3.12 - Vector Operations

Unit Vectors

In many applications of vectors, it is useful to find a unit vector that has the same direction as a given nonzero vector \mathbf{v}. To do this, you can divide \mathbf{v} by its length to obtain

$$
\mathbf{u}=\text { unit vector }=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{1}{\|\mathbf{v}\|}\right) \mathbf{v} . \quad \quad \text { Unit vector in direction of } \mathbf{v}
$$

Note that \mathbf{u} is a scalar multiple of \mathbf{v}. The vector \mathbf{u} has a magnitude of 1 and the same direction as \mathbf{v}. The vector \mathbf{u} is called a unit vector in the direction of \mathbf{v}.

Example: Find a unit vector in the direction of $\mathbf{v}=\langle-2,5\rangle$ and verify that the result has a magnitude of 1 .

Solution

The unit vector in the direction of \mathbf{v} is

$$
\begin{aligned}
\frac{\mathbf{v}}{\|\mathbf{v}\|} & =\frac{\langle-2,5\rangle}{\sqrt{(-2)^{2}+(5)^{2}}} \\
& =\frac{1}{\sqrt{29}}\langle-2,5\rangle \\
& =\left\langle\frac{-2}{\sqrt{29}}, \frac{5}{\sqrt{29}}\right\rangle=\left\langle\frac{-2 \sqrt{29}}{29}, \frac{5 \sqrt{29}}{29}\right\rangle .
\end{aligned}
$$

This vector has a magnitude of 1 because

$$
\sqrt{\left(\frac{-2 \sqrt{29}}{29}\right)^{2}+\left(\frac{5 \sqrt{29}}{29}\right)^{2}}=\sqrt{\frac{116}{841}+\frac{725}{841}}=\sqrt{\frac{841}{841}}=1 .
$$

Practice In Exercises 35-44, find a unit vector in the direction of the given vector.
35. $\mathbf{u}=\langle 6,0\rangle$
36. $\mathbf{u}=\langle 0,-2\rangle$
37. $\mathbf{v}=\langle-1,1\rangle$
38. $\mathbf{v}=\langle 3,-4\rangle$
39. $\mathbf{v}=\langle-24,-7\rangle$
40. $\mathbf{v}=\langle 8,-20\rangle$

