Lesson 3.13 - Linear combinations of vectors

Learning Objectives: SWBAT

1. Write a linear combination of two unit vector "i" and "j"
2. Perform operations on linear combinations of vectors

Background

The unit vectors $\langle 1,0\rangle$ and $\langle 0,1\rangle$ are called the standard unit vectors and are denoted by

$$
\mathbf{i}=\langle 1,0\rangle \quad \text { and } \quad \mathbf{j}=\langle 0,1\rangle
$$

as shown in Figure 6.26. (Note that the lowercase letter \mathbf{i} is written in boldface to distinguish it from the imaginary number $i=\sqrt{-1}$.) These vectors can be used to represent any vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ as follows.

$$
\begin{aligned}
\mathbf{v} & =\left\langle v_{1}, v_{2}\right\rangle \\
& =v_{1}\langle 1,0\rangle+v_{2}\langle 0,1\rangle \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}
\end{aligned}
$$

The scalars v_{1} and v_{2} are called the horizontal and vertical components of \mathbf{v}, respectively. The vector sum

Figure 6.26

$$
v_{1} \mathbf{i}+v_{2} \mathbf{j}
$$

is called a linear combination of the vectors \mathbf{i} and \mathbf{j}. Any vector in the plane can be written as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j}.

Example - Writing linear combinations of vectors

Let \mathbf{u} be the vector with initial point $(2,-5)$ and terminal point $(-1,3)$. Write \mathbf{u} as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j}.

Solution

Begin by writing the component form of the vector \mathbf{u}.

$$
\begin{aligned}
\mathbf{u} & =\langle-1-2,3-(-5)\rangle \\
& =\langle-3,8\rangle \\
& =-3 \mathbf{i}+8 \mathbf{j}
\end{aligned}
$$

This result is shown graphically in Figure 6.27.

Figure 6.27

Practice In Exercises 51-54, the initial and terminal points of a vector are given. Write the vector as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j}.

Initial Point

Terminal Point

51. $(-3,1)$
52. $(0,-2)$
53. $(-1,-5)$
54. $(-6,4)$

Lesson 3.13 - Linear combinations of vectors

Example - Operating with Linear Combinations

Let $\mathbf{u}=-3 \mathbf{i}+8 \mathbf{j}$ and $\mathbf{v}=2 \mathbf{i}-\mathbf{j}$. Find $2 \mathbf{u}-3 \mathbf{v}$.

Solution

You could solve this problem by converting \mathbf{u} and \mathbf{v} to component form. This, however, is not necessary. It is just as easy to perform the operations in unit vector form.

$$
\begin{aligned}
2 \mathbf{u}-3 \mathbf{v} & =2(-3 \mathbf{i}+8 \mathbf{j})-3(2 \mathbf{i}-\mathbf{j}) \\
& =-6 \mathbf{i}+16 \mathbf{j}-6 \mathbf{i}+3 \mathbf{j} \\
& =-12 \mathbf{i}+19 \mathbf{j} \longrightarrow \text { Component form: <-12, } 19>
\end{aligned}
$$

Practice: Let $\mathbf{u}=\mathbf{2 i} \mathbf{- j}$ and $\mathbf{w}=\mathbf{i}+\mathbf{2 j}$. Perform the operation given to determine the combined vector. Write your answer as both a linear combination and in component form
55. $\mathbf{v}=\frac{3}{2} \mathbf{u}$
56. $\mathbf{v}=\frac{2}{3} \mathbf{w}$
57. $\mathbf{v}=\mathbf{u}+2 \mathbf{w}$
58. $\mathbf{v}=-\mathbf{u}+\mathbf{w}$
59. $\mathbf{v}=\frac{1}{2}(3 \mathbf{u}+\mathbf{w})$
60. $v=2 u-2 w$

Find each of the following for $f=\langle 8,0\rangle, g=$
$\langle-3,-5\rangle$, and $h=\langle-6,2\rangle$.
$11.4 \mathrm{~h}-\mathrm{g}$
12. $f+2 h$
13. $3 \mathrm{~g}-5 \mathrm{f}+\mathrm{h}$
14. $2 \mathbf{f}+\mathbf{g}-3 \mathrm{~h}$
15. $\mathbf{f}-2 \mathrm{~g}-2 \mathrm{~h}$
16. $h-4 f+5 g$

