Learning Objectives: SWBAT

- 1. Determine the direction angle of a given vector
- 2. Perform operations on linear combinations of vectors

What is a direction Angle?

- · A direction angle is an angle that is created by a vector
- Direction angles are always measured counterclockwise from the positive side of the x axis to the terminal point of the vector
- The components of the vector determine the "run" (x coordinate) and rise (y coordinate) of the vector. These coordinates are the legs of a right triangle and are "connected" by the direction angle
- If we use the direction angle as a reference angle of the right triangle, then in order to determine the measure of the angle, we can use the Tan⁻¹ function

Examples - How to determine the direction angle of a vector

Find the direction angle of each vector.

a.
$$u = 3i + 3j$$
 b. $v = 3i - 4j$

Solution

a. The direction angle is

$$\tan \theta = \frac{b}{a} = \frac{3}{3} = 1.$$
 $\tan^{-1}(1) = 45^{\circ}$

So, $\theta = 45^{\circ}$, as shown in Figure 6.29.

b. The direction angle is

$$\tan\,\theta=\frac{b}{a}=\frac{-4}{3}.$$

Moreover, because $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ lies in Quadrant IV, θ lies in Quadrant IV and its reference angle is

$$\theta' = \left| \tan \left(-\frac{4}{3} \right) \right| \approx \left| -53.13^{\circ} \right| = 53.13^{\circ}.$$

So, it follows that $\theta \approx 360^{\circ} - 53.13^{\circ} = 306.87^{\circ}$, as shown in Figure 6.30.

Practice

Write each vector in component form.

Draw a diagram to illustrate the horizontal and vertical components of the vector. Then find the magnitude of each component.

5) $|\vec{t}| = 26,115^{\circ}$ 6) $|\vec{a}| = 15,230^{\circ}$

Find the magnitude and direction angle for each vector.

7) $8\vec{i} + 15\vec{j}$ 8) $\vec{r} = \langle -8, -41 \rangle$

Find the component form, magnitude, and direction angle for the given vector

9) \overrightarrow{CD} where C = (6, -3) D = (-6, -9)

10) $5\vec{i} - 12\vec{j}$ 11) \vec{RS} where R = (-9, -1) S = (-7, -3)

Sketch a graph of each vector then find the magnitude and direction angle.

Practice In Exercises 61–66, find the magnitude and direction angle of the vector v.
 61. v = 5(cos 30°i + sin 30°j)
 62. v = 8(cos 135°i + sin 135°j)
 63. v = 6i − 6j
 64. v = −4i − 7j

65. v = -2i + 5j66. v = 12i + 15j

In Exercises 67–72, find the component form of v given its magnitude and the angle it makes with the positive x-axis. Sketch v.

 Magnitude
 Angle

 Magnitude
 Angle

67. $\ \mathbf{v}\ = 3$	$\theta = 0^{\circ}$
68. $\ \mathbf{v}\ = 1$	$\theta = 45^{\circ}$
69. $\ \mathbf{v}\ = 3\sqrt{2}$	$\theta = 150^{\circ}$
70. $\ \mathbf{v}\ = 4\sqrt{3}$	$\theta = 90^{\circ}$
71. $\ \mathbf{v}\ = 2$	\mathbf{v} in the direction $\mathbf{i} + 3\mathbf{j}$
72. $\ \mathbf{v}\ = 3$	\mathbf{v} in the direction $3\mathbf{i} + 4\mathbf{j}$

<u>Practice</u> In Exercises 73–76, find the component form of the sum of u and v with direction angles θ_u and θ_v .

Magnitude	Angle	Magnitude	Angle
73. $\ \mathbf{u}\ = 5$	$\theta_{\rm u} = 60^{\circ}$	75. $\ \mathbf{u}\ = 20$	$\theta_{\rm u} = 45^{\circ}$
$\ \mathbf{v}\ = 5$	$\theta_{\rm v} = 90^{\circ}$	$\ \mathbf{v}\ = 50$	$\theta_{\rm v} = 150^{\circ}$

74. $\ \mathbf{u}\ = 2$	$\theta_{\rm u} = 30^{\circ}$	76. ∥ u ∥ = 35	$\theta_{\rm u} = 25^{\circ}$
$\ \mathbf{v}\ = 2$	$\theta_{\rm v}=90^{\circ}$	$\ \mathbf{v}\ = 50$	$\theta_{\rm v} = 120^{\circ}$