Lesson 3.14 - Direction Angles

Learning Objectives: SWBAT

1. Determine the direction angle of a given vector
2. Perform operations on linear combinations of vectors

What is a direction Angle?

- A direction angle is an angle that is created by a vector
- Direction angles are always measured counterclockwise from the positive side of the x axis to the terminal point of the vector
- The components of the vector determine the "run" (x coordinate) and rise (y coordinate) of the vector. These coordinates are the legs of a right triangle and are "connected" by the direction angle
- If we use the direction angle as a reference angle of the right triangle, then in order to determine the measure of the angle, we can use the Tan^{-1} function
Examples - How to determine the direction angle of a vector Find the direction angle of each vector.
a. $\mathbf{u}=3 \mathbf{i}+3 \mathbf{j}$
b. $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$

Solution

a. The direction angle is

$$
\tan \theta=\frac{b}{a}=\frac{3}{3}=1 . \quad \tan ^{-1}(1)=45^{\circ}
$$

So, $\theta=45^{\circ}$, as shown in Figure 6.29.

Figure 6.29
b. The direction angle is

$$
\tan \theta=\frac{b}{a}=\frac{-4}{3} .
$$

Moreover, because $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$ lies in Quadrant IV, θ lies in Quadrant IV and its reference angle is

$$
\theta^{\prime}=\left|\tan ^{-1}\left(-\frac{4}{3}\right)\right| \approx\left|-53.13^{\circ}\right|=53.13^{\circ} .
$$

So, it follows that $\theta \approx 360^{\circ}-53.13^{\circ}=306.87^{\circ}$, as shown in Figure 6.30.

Figure 6.30

Lesson 3.14 - Direction Angles

Practice

Write each vector in component form.
3)

Draw a diagram to illustrate the horizontal and vertical components of the vector. Then find the magnitude of each component.
5) $|\vec{t}|=26,115^{\circ}$
6) $|\vec{a}|=15,230^{\circ}$

Find the magnitude and direction angle for each vector.
7) $8 \vec{i}+15 \vec{j}$
8) $\vec{r}=\langle-8,-41\rangle$

Find the component form, magnitude, and direction angle for the given vector
9) $\overrightarrow{C D}$ where $C=(6,-3) D=(-6,-9)$

Sketch a graph of each vector then find the magnitude and direction angle.
10) $5 \vec{i}-12 \vec{j}$

11) $\overrightarrow{R S}$ where $R=(-9,-1) S=(-7,-3)$

Lesson 3.14 - Direction Angles

Practice In Exercises 61-66, find the magnitude and direction angle of the vector v.
61. $\mathbf{v}=5\left(\cos 30^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}\right)$
62. $\mathbf{v}=8\left(\cos 135^{\circ} \mathbf{i}+\sin 135^{\circ} \mathbf{j}\right)$
63. $\mathbf{v}=6 \mathbf{i}-6 \mathbf{j}$
64. $\mathbf{v}=-4 \mathbf{i}-7 \mathbf{j}$
65. $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}$
66. $\mathbf{v}=12 \mathbf{i}+15 \mathbf{j}$

In Exercises 67-72, find the component form of v given its magnitude and the angle it makes with the positive x-axis. Sketch v.

> | > Magnitude | Angle | |
| :--- | ---: | :---: |
| > 67. $\\|\mathbf{v}\\|=3$ | $\theta=0^{\circ}$ > | |

68. $\|\mathbf{v}\|=1$
$\theta=45^{\circ}$
69. $\|\mathbf{v}\|=3 \sqrt{2}$
$\theta=150^{\circ}$
70. $\|\mathbf{v}\|=4 \sqrt{3} \quad \theta=90^{\circ}$
71. $\|\mathbf{v}\|=2 \quad \mathbf{v}$ in the direction $\mathbf{i}+3 \mathbf{j}$
72. $\|\mathbf{v}\|=3$
\mathbf{v} in the direction $3 \mathbf{i}+4 \mathbf{j}$

Lesson 3.14 - Direction Angles

Practice In Exercises 73-76, find the component form of the sum of u and v with direction angles $\boldsymbol{\theta}_{\mathrm{u}}$ and $\boldsymbol{\theta}_{\mathrm{v}}$.

Magnitude	Angle	Magnitude	Angle				
73. $\\|\mathbf{u}\\|=5$	$\theta_{\mathbf{u}}=60^{\circ}$	75. $\\|\mathbf{u}\\|=20$	$\theta_{\mathbf{u}}=45^{\circ}$				
$\\|\mathbf{v}\\|=5$	$\theta_{\mathbf{v}}=90^{\circ}$	$\\|\mathbf{v}\\|=50$	$\theta_{\mathbf{v}}=150^{\circ}$				

74. $\|\mathbf{u}\|=2$
$\|\mathbf{v}\|=2$
$\theta_{\mathrm{u}}=30^{\circ}$
$\theta_{v}=90^{\circ}$
75. $\|\mathbf{u}\|=35$
$\theta_{\mathrm{u}}=25^{\circ}$
$\|\mathbf{v}\|=50$
$\theta_{\mathrm{v}}=120^{\circ}$
