Lesson 3.7 - The Law of Sines (practice)

State the number of possible triangles that can be formed using the given measurements.

1) $m \angle A=31^{\circ}, c=20 \mathrm{mi}, a=16 \mathrm{mi}$
2) $m \angle B=82^{\circ}, a=34 \mathrm{~m}, b=22 \mathrm{~m}$
3) $m \angle B=110^{\circ}, b=11 \mathrm{~m}, a=4 \mathrm{~m}$
4) $m \angle A=64^{\circ}, c=33$ in, $a=32$ in

Find each measurement indicated. Round your answers to the nearest tenth.
5) $m \angle A=64^{\circ}, m \angle B=98^{\circ}, a=29 \mathrm{mi}$ Find b
6) $m \angle A=57^{\circ}, c=35 \mathrm{~cm}, a=33 \mathrm{~cm}$ Find b
7) $m \angle C=128^{\circ}, b=35 \mathrm{in}, c=35$ in Find a
8) $m \angle C=90^{\circ}, m \angle B=30^{\circ}, b=15$ in Find c
9) In $\triangle T R S, m \angle S=118^{\circ}, s=16 \mathrm{ft}, r=5 \mathrm{ft}$ Find $m \angle R$
10) In $\triangle K H P, m \angle K=27^{\circ}, p=35 \mathrm{~m}, k=18 \mathrm{~m}$ Find $m \angle P$

Solve each triangle. Round your answers to the nearest tenth.
13)

14)

Lesson 3.7-The Law of Sines (practice)

17. For parallelogram $A B C D$ below find $B C$ to the nearest tenth.

18. For parallelogram ABCD below find $\mathrm{m} \angle \mathrm{DBC}$ to the nearest whole degree.

19. For the figure below find $B C$ to the nearest whole number. $\mathrm{CD}=15$.

20. For the figure below find $\mathrm{m} \angle E D G$ to the nearest whole degree.

21. Find the height of the building in the figure below to the nearest foot.

Lesson 3.7 - The Law of Sines (practice)

Determine the number of possible triangles that exist given the following information: $\mathbf{a}=\mathbf{3 5}, \mathbf{b}=\mathbf{2 0}$ and $\mathbf{A}=33^{\circ}$. If more than one triangle exists, solve for missing sides/angles for both triangles.

Determine the number of possible triangles that exist given the following information: $a=18, b=32$ and $A=65^{\circ}$. If more than one triangle exists, solve for missing sides/angles for both triangles.

Determine the number of possible triangles that exist given the following information: $\mathbf{a}=\mathbf{1 0}, \mathbf{b}=\mathbf{2 0}$ and $\mathbf{A = 2 8} \mathbf{2 8}^{\circ}$. If more than one triangle exists, solve for missing sides/angles for both triangles.

Lesson 3.7 - The Law of Sines (practice)

The course for a boat race starts at point A and proceeds in the direction $\mathrm{S} 52^{\circ} \mathrm{W}$ to point B, then in the direction $\mathrm{S} 40^{\circ} \mathrm{E}$ to point C, and finally back to A, as shown in Figure 6.9. Point C lies 8 kilometers directly south of point A. Approximate the total distance of the race course.

Height You are standing 40 meters from the base of a tree that is leaning 8° from the vertical away from you. The angle of elevation from your feet to the top of the tree is $20^{\circ} 50^{\prime}$.
(a) Draw a triangle that represents the problem. Show the known quantities on the triangle and use a variable to indicate the height of the tree.
(b) Write an equation involving the unknown height of the tree.
(c) Find the height of the tree.

To measure the length d of a lake (see Fig. 7), a baseline $A B$ is established and measured to be 125 meters. Angles A and B are measured to be 41.6° and 124.3°, respectively. How long is the lake?

