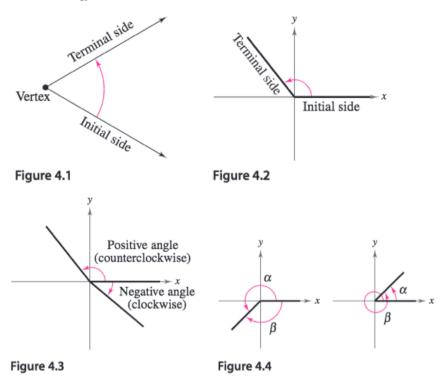
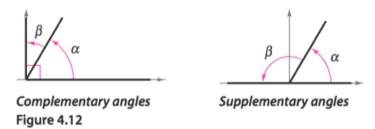
Learning Objectives: SWBAT

- 1. Determine and sketch angles that are coterminal to a given angle
- 2. Determine complimentary and supplementary angles (in radians)

An **angle** is determined by rotating a ray (half-line) about its endpoint. The starting position of the ray is the **initial side** of the angle, and the position after rotation is the **terminal side**, as shown in Figure 4.1. The endpoint of the ray is the **vertex** of the angle. This perception of an angle fits a coordinate system in which the origin is the vertex and the initial side coincides with the positive x-axis. Such an angle is in **standard position**, as shown in Figure 4.2. **Positive angles** are generated by counterclockwise rotation, and **negative angles** by clockwise rotation, as shown in Figure 4.3. Angles are labeled with Greek letters such as α (alpha), β (beta), and θ (theta), as well as uppercase letters such as A, B, and C. In Figure 4.4, note that angles α and β have the same initial and terminal sides. Such angles are **coterminal**.



Two positive angles α and β are complementary (complements of each other) if their sum is $\pi/2$. Two positive angles are supplementary (supplements of each other) if their sum is π . See Figure 4.12.



Examples: How to find coterminal angle(s) of a given angle

a. For the positive angle $\theta = \frac{13\pi}{6}$, subtract 2π to obtain a coterminal angle

$$\frac{13\pi}{6} - 2\pi = \frac{\pi}{6}.$$
 See Figure 4.9.

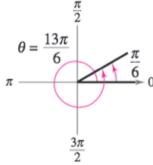


Figure 4.9

b. For the positive angle $\theta = \frac{3\pi}{4}$, subtract 2π to obtain a coterminal angle

$$\frac{3\pi}{4} - 2\pi = -\frac{5\pi}{4}$$
. See Figure 4.10.

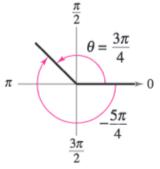


Figure 4.10

c. For the negative angle $\theta = -\frac{2\pi}{3}$, add 2π to obtain a coterminal angle

$$-\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}$$
. See Figure 4.11.

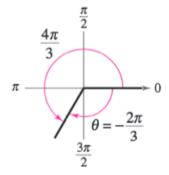


Figure 4.11

Your Turn: For the negative angle $-\frac{5\pi}{4}$, determine two coterminal angles

Examples: How to find complimentary and supplementary angles (in radians)

If possible, find the complement and the supplement of (a) $\frac{2\pi}{5}$ and (b) $\frac{4\pi}{5}$.

Solution

a. The complement of $\frac{2\pi}{5}$ is

$$\frac{\pi}{2} - \frac{2\pi}{5} = \frac{5\pi}{10} - \frac{4\pi}{10}$$

$$=\frac{\pi}{10}.$$

The supplement of $\frac{2\pi}{5}$ is

$$\pi - \frac{2\pi}{5} = \frac{5\pi}{5} - \frac{2\pi}{5}$$
$$= \frac{3\pi}{5}.$$

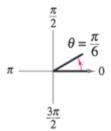
b. Because $4\pi/5$ is greater than $\pi/2$, it has no complement. (Remember that complements are *positive* angles.) The supplement is

$$\pi - \frac{4\pi}{5} = \frac{5\pi}{5} - \frac{4\pi}{5}$$
$$= \frac{\pi}{5}.$$

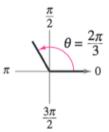
Practice:

In Exercises 11–14, determine two coterminal angles in radian measure (one positive and one negative) for each angle. (There are many correct answers).

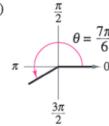
11. (a)



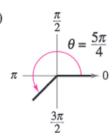
(b



12. (a)



(b



13. (a)
$$-\frac{9\pi}{4}$$

(b)
$$-\frac{2\pi}{15}$$

14. (a)
$$\frac{7\pi}{8}$$

(b)
$$\frac{87}{45}$$

Practice:

In Exercises 15–20, find (if possible) the complement and supplement of the angle.

15.
$$\frac{\pi}{3}$$

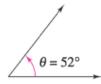
16.
$$\frac{3\pi}{4}$$

17.
$$\frac{\pi}{6}$$

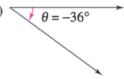
18.
$$\frac{2\pi}{3}$$

In Exercises 31–34, determine two coterminal angles in degree measure (one positive and one negative) for each angle. (There are many correct answers).

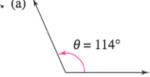
31. (a)



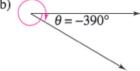
(b)



32. (



(b)



(b)
$$-740^{\circ}$$

75. Find each angle (in radians) shown on the unit circle.

