Lesson 4.2 - Coterminal angles

Learning Objectives: SWBAT

1. Determine and sketch angles that are coterminal to a given angle
2. Determine complimentary and supplementary angles (in radians)

An angle is determined by rotating a ray (half-line) about its endpoint. The starting position of the ray is the initial side of the angle, and the position after rotation is the terminal side, as shown in Figure 4.1. The endpoint of the ray is the vertex of the angle. This perception of an angle fits a coordinate system in which the origin is the vertex and the initial side coincides with the positive x-axis. Such an angle is in standard position, as shown in Figure 4.2. Positive angles are generated by counterclockwise rotation, and negative angles by clockwise rotation, as shown in Figure 4.3. Angles are labeled with Greek letters such as α (alpha), β (beta), and θ (theta), as well as uppercase letters such as A, B, and C. In Figure 4.4, note that angles α and β have the same initial and terminal sides. Such angles are coterminal.

Figure 4.1

Figure 4.3

Figure 4.2

Figure 4.4

Two positive angles α and β are complementary (complements of each other) if their sum is $\pi / 2$. Two positive angles are supplementary (supplements of each other) if their sum is π. See Figure 4.12.

Complementary angles

Supplementary angles

Figure 4.12

Lesson 4.2 - Coterminal angles

Examples: How to find coterminal angle(s) of a given angle
a. For the positive angle $\theta=\frac{13 \pi}{6}$, subtract 2π to obtain a coterminal angle

$$
\frac{13 \pi}{6}-2 \pi=\frac{\pi}{6} . \quad \text { See Figure 4.9. }
$$

Figure 4.9
b. For the positive angle $\theta=\frac{3 \pi}{4}$, subtract 2π to obtain a coterminal angle

$$
\frac{3 \pi}{4}-2 \pi=-\frac{5 \pi}{4} . \quad \text { See Figure 4.10 }
$$

Figure 4.10
c. For the negative angle $\theta=-\frac{2 \pi}{3}$, add 2π to obtain a coterminal angle

$$
-\frac{2 \pi}{3}+2 \pi=\frac{4 \pi}{3} . \quad \text { See Figure 4.11 }
$$

Figure 4.11

Your Turn: For the negative angle $-\frac{5 \pi}{4}$, determine two coterminal angles

Lesson 4.2 - Coterminal angles

Examples: How to find complimentary and supplementary angles (in radians)
If possible, find the complement and the supplement of (a) $\frac{2 \pi}{5}$ and (b) $\frac{4 \pi}{5}$.

Solution

a. The complement of $\frac{2 \pi}{5}$ is The supplement of $\frac{2 \pi}{5}$ is

$$
\begin{aligned}
\frac{\pi}{2}-\frac{2 \pi}{5} & =\frac{5 \pi}{10}-\frac{4 \pi}{10} & \pi-\frac{2 \pi}{5} & =\frac{5 \pi}{5}-\frac{2 \pi}{5} \\
& =\frac{\pi}{10 .} & & =\frac{3 \pi}{5} .
\end{aligned}
$$

b. Because $4 \pi / 5$ is greater than $\pi / 2$, it has no complement. (Remember that complements are positive angles.) The supplement is

$$
\begin{aligned}
\pi-\frac{4 \pi}{5} & =\frac{5 \pi}{5}-\frac{4 \pi}{5} \\
& =\frac{\pi}{5}
\end{aligned}
$$

Practice: In Exercises 11-14, determine two coterminal angles in radian measure (one positive and one negative) for each angle. (There are many correct answers).
11. (a)

(b)

12. (a)

(b)

13. (a) $-\frac{9 \pi}{4}$
(b) $-\frac{2 \pi}{15}$
14. (a) $\frac{7 \pi}{8}$
(b) $\frac{8 \pi}{45}$

Lesson 4.2 - Coterminal angles

Practice:

In Exercises 15-20, find (if possible) the complement and supplement of the angle.
15. $\frac{\pi}{3}$
16. $\frac{3 \pi}{4}$
17. $\frac{\pi}{6}$
18. $\frac{2 \pi}{3}$

In Exercises 31-34, determine two coterminal angles in degree measure (one positive and one negative) for each angle. (There are many correct answers).
31. (a)

(b)

32. (a)

(b)

33. (a) 300°
(b) 230°
34. (a) -445°
(b) -740°
75. Find each angle (in radians) shown on the unit circle.

