Lesson 4.4 - Reference Angles

Learning Objectives: SWBAT

1. Determine/sketch the reference angle of a given angle

What are Reference angles?

The values of the trigonometric functions of angles greater than 90° (or less than 0°) can be determined from their values at corresponding acute angles called **reference angles.**

Definition of Reference Angle

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Figure 4.35 shows the reference angles for θ in Quadrants II, III, and IV.

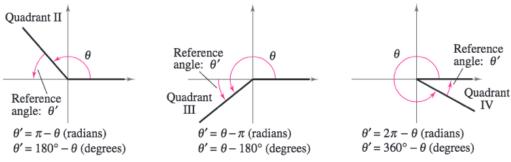


Figure 4.35

How to find reference angles

Find the reference angle θ' .

a.
$$\theta = 300^{\circ}$$

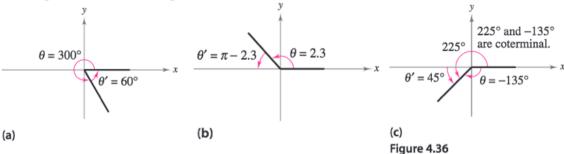
b.
$$\theta = 2.3$$

c.
$$\theta = -135^{\circ}$$

Solution

a. Because 300° lies in Quadrant IV, the angle it makes with the x-axis is

$$\theta' = 360^{\circ} - 300^{\circ} = 60^{\circ}$$
. Degrees

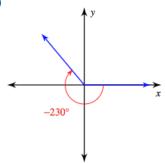

b. Because 2.3 lies between $\pi/2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

$$\theta' = \pi - 2.3 \approx 0.8416$$
. Radian

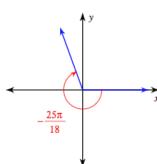
c. First, determine that -135° is coterminal with 225°, which lies in Quadrant III. So, the reference angle is

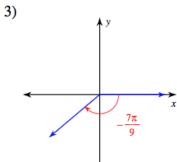
$$\theta' = 225^{\circ} - 180^{\circ} = 45^{\circ}$$
. Degrees

Figure 4.36 shows each angle θ and its reference angle θ' .

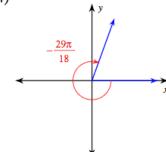


Lesson 4.4 - Reference Angles

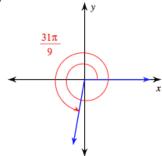

<u>Practice</u> - Find the reference angle for the following:

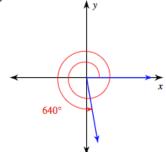

Find the reference angle.

1)



2)




4)

5)

6)

8)
$$-\frac{19\pi}{18}$$

9)
$$-\frac{13\pi}{12}$$

9)
$$-\frac{47\pi}{12}$$

10)
$$-\frac{5\pi}{4}$$

Lesson 4.4 - Reference Angles

<u>Practice</u> - Sketch and find the reference angle for the following:

43.
$$\theta = -\frac{5\pi}{6}$$

44.
$$\theta = -\frac{2\pi}{3}$$

45.
$$\theta = 208^{\circ}$$

46.
$$\theta = 322^{\circ}$$

47.
$$\theta = -292^{\circ}$$

48.
$$\theta = -165^{\circ}$$

49.
$$\theta = \frac{11\pi}{5}$$

50.
$$\theta = \frac{17\pi}{7}$$