Lesson 4.5 - Evaluating trig functions (part 2)

Learning Objectives: SWBAT

1. Use reference angles to evaluate trig functions for a given angle

Making a connection

- In lesson 4.3, we learned to evaluate trig functions for a given angle if we were also given specific information about the quadrant it was in.
- In this lesson, we will use reference angles to determine the quadrant the angle is in before evaluating.

To see how a reference angle is used to evaluate a trigonometric function, consider the point (x, y) on the terminal side of θ , as shown in Figure 4.37. By definition, you know that

$$\sin \theta = \frac{y}{r}$$
 and $\tan \theta = \frac{y}{x}$.

For the right triangle with acute angle θ' and sides of lengths |x| and |y|, you have

$$\sin \theta' = \frac{\text{opp}}{\text{hyp}} = \frac{|y|}{r}$$

and

$$\tan \theta' = \frac{\text{opp}}{\text{adj}} = \frac{|y|}{|x|}.$$

So, it follows that $\sin \theta$ and $\sin \theta'$ are equal, except possibly in sign. The same is true for $\tan \theta$ and $\tan \theta'$ and for the other four trigonometric functions. In all cases, the sign of the function value can be determined by the quadrant in which θ lies.

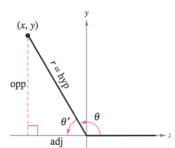


Figure 4.37

Evaluating Trigonometric Functions of Any Angle

To find the value of a trigonometric function of any angle θ :

- 1. Determine the function value for the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

Evaluate each trigonometric function.

a.
$$\cos \frac{4\pi}{3}$$
 b. $\tan(-210^{\circ})$ **c.** $\csc \frac{11\pi}{4}$

Solution

a. Because $\theta=4\pi/3$ lies in Quadrant III, the reference angle is $\theta'=(4\pi/3)-\pi=\pi/3$, as shown in Figure 4.38. Moreover, the cosine is negative in Quadrant III, so

$$\cos\frac{4\pi}{3} = (-)\cos\frac{\pi}{3} = -\frac{1}{2}$$

b. Because $-210^{\circ} + 360^{\circ} = 150^{\circ}$, it follows that -210° is coterminal with the second-quadrant angle 150°. Therefore, the reference angle is $\theta' = 180^{\circ} - 150^{\circ} = 30^{\circ}$, as shown in Figure 4.39. Finally, because the tangent is negative in Quadrant II, you have

$$\tan(-210^\circ) = (-)\tan 30^\circ = -\frac{\sqrt{3}}{3}.$$

c. Because $(11\pi/4) - 2\pi = 3\pi/4$, it follows that $11\pi/4$ is coterminal with the second-quadrant angle $3\pi/4$. Therefore, the reference angle is $\theta' = \pi - (3\pi/4) = \pi/4$, as shown in Figure 4.40. Because the cosecant is positive in Quadrant II, you have

$$\csc \frac{11\pi}{4} = (+)\csc \frac{\pi}{4} = \frac{1}{\sin(\pi/4)} = \sqrt{2}.$$

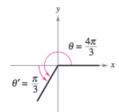


Figure 4.38

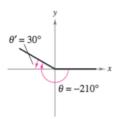


Figure 4.39

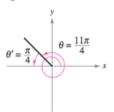


Figure 4.40

Lesson 4.5 - Evaluating trig functions (part 2)

Practice

In Exercises 53-64, evaluate the sine, cosine, and tangent of the angle without using a calculator. sketch the reference angle

57.
$$\frac{5\pi}{3}$$

58.
$$\frac{3\pi}{4}$$

59.
$$-\frac{\pi}{6}$$

60.
$$-\frac{4\pi}{3}$$

61.
$$\frac{11\pi}{4}$$

62.
$$\frac{10\pi}{3}$$

63.
$$-\frac{17\pi}{6}$$

64.
$$-\frac{20\pi}{3}$$