How many discontinuities does this function have?

$$
\frac{x^{2}+4 x+4}{x^{3}-9 x}
$$

Answer: 3

Simplify the Following, write answer in standard form

$$
(3-9 i)-(4+8 i)
$$

$$
-1-17 i
$$

Solve the following equation and check for extraneous solutions

$$
5|6 x+7|+8=2
$$

No Solution

True or False: If the degree of the numerator of a rational function is greater than the degree of the denominator, then there must be a slant asymptote

False

Write the equation of the quadratic function that has $3-i \sqrt{3}$ as a zero

$$
f(x)=x^{2}-6 x+12
$$

Graph the solution to the following inequality: $3|x-9|+6 \leq 9$

Solve for x

$$
\begin{aligned}
& \frac{1}{x}-3=9 \\
& x=1 / 12
\end{aligned}
$$

True or False: Is it possible for a 6th degree polynomial to have no real solutions and only complex solutions

True

Simplify the following

$$
\frac{4+i}{1-2 i}
$$

$\frac{2+9 i}{5}$

Determine the coordinate of the x intercept(s) for the function

$$
f(x)=\frac{x^{2}-2 x-8}{x^{2}-12 x-28}
$$

$(4,0)$

Name the three types of functions that have extraneous solutions

Solve the following inequality and write the answer in interval notation

$$
\begin{aligned}
& (x+3)^{2}(x-1)^{3}<0 \\
& \quad(-\infty, 3) \cup(-3,1)
\end{aligned}
$$

True or False the number -16 is all of the following:

- It is a real number
- It is an Integer
- It is a rational number
- It is a complex number

Determine the coordinate of any holes for the function.
 $$
f(x)=\frac{x^{2}-2 x-8}{x^{2}-12 x-28}
$$

$(-2,3 / 8)$

Solve the inequality

$$
10+12|x+23|>-130
$$

All Real Numbers

True or False: It is possible for a 5th degree polynomial to have two real and three complex solutions

False

Determine the coordinate of the y intercept(s) for the function

$$
f(x)=\frac{x^{2}-2 x-8}{x^{2}-12 x-28}
$$

$(0,2 / 7)$

Simplify the following:
 $(11-2 i)(11+2 i)$

125

$1-3 i$ is a zero of the function below. Determine all other zeros $f(x)=x^{3}-8 x^{2}+22 x-60$

$$
x=1+3 i, 6
$$

